Advertisement

Multiscale simulation of pollution gases adsorption in porous organic cage CC3

Authors


Abstract

A general multiscale simulation procedure is proposed to accurately predict the uptakes of pollution gases such as CO2, SO2, H2S, and CO in one of the most investigated porous organic cages CC3 by using a sophisticated force field vdW3 fitted by double hybrid functional (B2PLYP) with a dispersion correction (D3) separately for gas–gas and CC3-gas interactions. The fitted vdW3 was used in grand canonical Monte Carlo simulations. Good comparison with the coupled cluster single and double excitation and the perturbative triples (CCSD(T))/complete basis set (CBS) limit interaction energies make the B2PLYP-D3 results reliable for our purpose. The good agreement of simulated CO2 loading with experimental one and the low deviation in the fitting procedure for H2S and CO make our approach available in predicting gases in novel porous materials. © 2013 Wiley Periodicals, Inc.

Ancillary