Initial interactions in electromagnetic field-induced biosynthesis

Authors


Abstract

Low frequency electromagnetic (EM) fields induce gene expression, and recent insights into physical interactions of EM fields with model systems suggest a mechanism that could initiate this process. The consistently low thresholds at which EM fields stimulate biological processes indicate that they require little energy. Since it has been shown that such weak fields accelerate electron transfer reactions, they could stimulate transcription by interacting with electrons in DNA to destabilize the H-bonds holding the two DNA strands together. Such a mechanism is consistent with the low electron affinity of the bases in previously identified electromagnetic response elements (EMREs) needed for EM field interaction with DNA. It is also in line with both endogenous and in vitro stimulation of biosynthesis by electric fields. The frequency response of several EM sensitive biological systems suggests that EM fields require repetition and are most effective at frequencies that coincide with natural rhythms of the processes affected. © 2004 Wiley-Liss, Inc.

Ancillary