SEARCH

SEARCH BY CITATION

Abstract

Endothelium extracellular matrix (ECM) interactions can provide distinct spatial and molecular signals which control cellular proliferation, migration, and differentiation. Here, we investigated the role of fibronectin (FN), a major ECM protein, on the functions of lymphatic endothelial cells (LEC). We observed that FN, the ligand for integrin α5β1, selectively promoted the growth of LEC as compared with vitronectin (VN) in the presence of the ligand for vascular endothelial growth factor receptor 3 [VEGFR-3 (VEGF-C156S)]. Upon investigating the mechanisms whereby ECM components regulate VEGFR-3 signaling, we found that FN transactivated VEGFR-3 and significantly enhanced the phosphorylation of VEGFR-3 induced by VEGF-C156S as compared to VN. An enhanced association of the integrin subunit α5 or β1 with VEGFR-3, after stimulation with VEGF-C156S, was observed by co-immunoprecipitation. While blockade of integrin α5β1 inhibited the VEGF-C156S-induced phosphorylation of VEGFR-3, no similar effect was obtained by blocking integrin αvβ3. FN also protected the endothelial cells from serum deprivation-induced apoptosis. Moreover, while the specific PI3 kinase inhibitor, LY294002, abolished this FN-mediated cell survival, the MAPK kinase inhibitor, PD98059, had no significant effect. Furthermore, a dominant-negative mutant of VEGFR-3 (G857R) reduced VEGF-C156S or FN-mediated cell survival, as well as the activities of PI3 kinase/Akt. Our results indicate that integrin α5β1 participates in the activation of both VEGFR-3 and its downstream PI3 kinase/Akt signaling pathway, which is essential for FN-mediated lymphatic endothelial cell survival and proliferation. © 2005 Wiley-Liss, Inc.