SEARCH

SEARCH BY CITATION

Abstract

We have shown previously that androgen receptor (AR) activity is required for the progression of cells from G1 to S phase. In an attempt to elucidate the mechanism of androgen- and androgen-receptor-mediated proliferation of prostate cancer cells, we studied the effect of anti-androgen bicalutamide (Casodex) on the expression of cell-cycle regulatory genes in synchronized LNCaP cells progressing from G1 to S phase. LNCaP cells were synchronized by isoleucine-deprivation. Expression of cell-cycle regulatory genes in S phase control cells versus Casodex-treated cells that fail to enter S phase was studied using a microarray containing cDNA probes for 111 cell-cycle specific genes. RT-PCR and Western-blots were used to validate microarray data. Casodex blocked synchronized LNCaP cells from entering S phase. Microarrays revealed downregulation of eight genes in cells prevented from entering into S phase by Casodex. Of these eight genes, only Cdc6, cyclin A, and cyclin B were downregulated at both the mRNA and protein level in Casodex treated cells as compared to control cells. The mRNA and protein levels of Cdc6 increased as synchronized LNCaP cells progressed from G1 to S phase, and were attenuated in Casodex-treated cells failed to enter S phase. Cyclins A and B were detected when cells entered S phase, but not when they were in G1 phase. Like Cdc6, the levels of both cyclins A and B were attenuated in Casodex-treated cells. AR may play an important role in the onset of DNA synthesis in prostate cancer cells by regulating the expression and stability of Cdc6, which is critically required for the assembly of the pre-replication complex(pre-RC). © 2005 Wiley-Liss, Inc.