Distinct functions of H-Ras and K-Ras in proliferation and survival of primary hepatocytes due to selective activation of ERK and PI3K



Ras proteins mediate signals both via extracellular signal-regulated kinase 1 and 2 (ERK), and phosphoinositide 3-kinase (PI3K). These signals are key events in cell protection and compensatory cell growth after exposure to cell damaging and pro-apoptotic stimuli, thus maintaining homeostasis. By transfection techniques, we found that both H-Ras and K-Ras were expressed and appeared functionally active in primary hepatocytes. We compared the ability of H-Ras and K-Ras homologues to preferentially activate one of the two pathways, thereby differentially controlling cell survival and growth. We found that ectopic expression of dominant negative (DN) H-RasN17, but not DN K-RasN17, efficiently inhibited both phosphorylation and translocation of ERK to the nuclear compartment, which are prerequisites for cell cycle progression. Furthermore, ectopic expression of constitutive active (CA) H-RasV12, but not CA K-RasV12, potentiated EGF-induced proliferation. We also found that expression of CA mutants of either H-Ras or K-Ras protected hepatocytes from transforming growth factor-β1 (TGF-β1)-induced apoptosis. However, H-Ras-induced survival was mediated by ERK/RSK as well as by PI3K, whereas K-Ras-induced survival was mediated by PI3K only. In conclusion, H-Ras and K-Ras had differential functions in proliferation and survival of primary hepatocytes. H-Ras was the major mediator of ERK-induced proliferation and survival, whereas H-Ras and K-Ras both mediated PI3K-induced survival. J. Cell. Physiol. 215: 818–826, 2008. © 2007 Wiley-Liss, Inc.