SEARCH

SEARCH BY CITATION

Abstract

Mouse embryonic fibroblasts (MEFs) can be differentiated into fully functional chondrocytes in response to bone morphogenetic protein-2 (BMP-2). The expression of Sox9, a critical transcription factor for the multiple steps of chondrogenesis, has been reported to be upregulated during this process. But the molecular mechanisms by which BMP-2 promotes chondrogenesis still remain largely unknown. The aim of the present study was therefore to investigate the underlying mechanism. In the MEFs, BMP-2 efficiently induced Sox9 expression along with chondrogenic differentiation in a time- and dose-dependent manner. SB203580, a specific inhibitor for p38 pathway, blocked BMP-2-induced chondrogenic differentiation as well as Sox9 expression and its transactivation of downstream genes. Forced expression of Smad6, a natural antagonist for BMP/Smad pathway, only inhibited Sox9 protein function without rendering any effects on its mRNA expression. A CCAAT box was identified in Sox9 promoter as the cis-elements responsible for BMP-2 stimulation. This study provides insight into the mechanisms underlying BMP-2-regulated Sox9 expression and activity in MEFs, and suggests differential roles of BMP-2/p38 and BMP-2/Smad pathways in modulating the function of Sox9 during chondrogenesis. J. Cell. Physiol. 217: 228–241, 2008. © 2008 Wiley-Liss, Inc.