Hypertrophy of human mesangial cells (HMC) is among the earliest characteristics in patients with diabetic nephropathy (DN). Recently, we observed the upregulation of parathyroid hormone (PTH)-related protein (PTHrP) in experimental DN, associated with renal hypertrophy. Herein, we first examined whether PTHrP was overexpressed in human DN, and next assessed the putative role of this protein on high glucose (HG)-induced HMC hypertrophy. As previously found in mice, kidneys from diabetic patients showed an increased tubular and glomerular immunostaining for PTHrP. In HMC, HG medium increased PTHrP protein expression associated with the development of hypertrophy as assessed by cell protein content. This effect was also induced by PTHrP(1–36). HG and PTHrP(1–36)-induced hypertrophy were associated with an increase in cyclin D1 and p27Kip1 protein expression, a decreased cyclin E expression, and the prevention of cyclin E/cdk2 complex activation. Both PTHrP neutralizing antiserum (α-PTHrP) and the PTH/PTHrP receptor antagonist (JB4250) were able to abolish HG induction of hypertrophy, the aforementioned changes in cell cycle proteins, and also TGF-β1 up-regulation. Moreover, the capability of both HG and PTHrP(1–36) to induce HMC hypertrophy was abolished by α-TGFβ1. These data show for the first time that PTHrP is upregulated in the kidney of patients with DN. Our findings also demonstrate that PTHrP acts as an important mediator of HG-induced HMC hypertrophy by modulating cell cycle regulatory proteins and TGF-β1. J. Cell. Physiol. 227: 1980–1987, 2012. © 2011 Wiley Periodicals, Inc.