• sulfated polysaccharides;
  • downstream processing;
  • carbohydrate purification;
  • binding thermodynamics;
  • chromatography;
  • antiviral



Complex polysaccharides are important in the pharmaceutical industry, yet, due to their large molecular weight and reduced charges, their purification is a highly demanding process that requires binding matrices with unique properties. This work demonstrates for the first time that complex polysaccharides biosynthesized by microalga Porphyridium purpureum can be adsorbed onto Q fibrous anion exchangers.


When the polysaccharides were characterized, the extent of sulfation was higher in native polysaccharides than in ethanol- or alkali-extracts. The zeta potentials increased with increasing pH and the highest charge was observed at pH 8, while the Z-average diameters of the polysaccharide at pH 6 were highest for alkali-extracts. Instead of pellicular resins, Q fibrous adsorbents were used to determine Langmuir thermodynamic properties and dynamic binding capacities. The parameters included static binding capacity and dissociation constant of 13.47 ± 1.02 mg g-1 and 0.141 ± 0.027 mg mL-1, and 10 and 50% breakthrough capacities of 4.46 ± 0.22 and 5.51 ± 0.28 mg g-1, respectively. The antiviral activity of the polysaccharides was demonstrated by minimizing bacteriophage lysis of Streptococcus thermophilus.


This work demonstrates that polysaccharide extraction can be optimized and the adsorption and desorption of a complex polysaccharide onto Q fibrous matrix is feasible. These parameters could be exploited for up-scaling of polysaccharides for nutraceutical and pharmaceutical applications. © 2013 Society of Chemical Industry