SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    United States Environmental Protection Agency. Opportunities to Reduce Greenhouse Gas Emissions through Materials and Land Management Practices; Office of solid waste and emergency response (RPA): Washington, DC, USA, September 2009. Available online: http://www.epa.gov/oswer/docs/ghg_land_and_materials_management.pdf (accessed on 19 June 2013).
  • 2
    Lim M, Han GC, Ahn JW and You KS, Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology. Int J Environ Res Public Health 7:203 (2010).
  • 3
    Jin F, Zeng X, Jing Z and Enomoto H, A potentially useful technology by mimicking nature - rapid conversion of biomass and CO2 into chemicals and fuels under hydrothermal conditions. Ind Eng Chem Res 51:9921 (2012).
  • 4
    Aresta M and Dibenedetto A, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2975 (2007).
  • 5
    Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL and Chen Z, Climate Change 2007; The Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC) (2007).
  • 6
    Razali NAM, Lee KT, Bhatia S and Mohamed AR, Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material a review. Renew Sust Energy Rev 16:4951 (2012).
  • 7
    Yang ZZ, He LN, Gao J, Liu AH and Yu B, Carbon dioxide utilization with C.N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ Sci 5:6602 (2012).
  • 8
    Anastas PT, Meeting the challenges to sustainability through green chemistry. Green Chem 5:G29 (2003).
  • 9
    Anastas PT and Lankey RL, Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2:289 (2000).
  • 10
    Gomes CDN, Jacquet O, Villiers C, Thuéry P, Ephritikhine M and Cantat T, A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew Chem Int Ed 51:187 (2012).
  • 11
    Aresta M, Carbon Dioxide as Chemical Feedstock. Wiley-VCH (2010).
  • 12
    Song C, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2 (2006).
  • 13
    Tanaka R, Yamashita M and Nozaki K, Catalytic hydrogenation of carbon dioxide using Ir(III) − pincer complexes. J Am Chem Soc 131:14168 (2009).
  • 14
    Jessop PG, Ikariya T and Noyori R, Homogeneous catalysis in supercritical fluids. Chem Rev 99:475 (1999).
  • 15
    Jessop PG, Hsiao Y, Ikariya T and Noyori R, Homogeneous catalysis in supercritical fluids:  hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J Am Chem Soc 118:344 (1996).
  • 16
    Arena F, Barbera K, Italiano G, Bonura G, Spadaro L and Frusteri F, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249:185 (2007).
  • 17
    Toyir J, de la Piscina PR, Fierro JLG and Homs N, Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B 34:255 (2001).
  • 18
    Joo OS, Jung KD, Moon I, Rozovskii AY, Lin GI, Han SH and Uhm SJ, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process). Ind Eng Chem Res 38:1808 (1999).
  • 19
    Sakakura T, Choi JC and Yasuda H, Transformation of carbon dioxide. Chem Rev 107:2365 (2007).
  • 20
    Babad H and Zeiler AG, Chemistry of phosgene. Chem Rev 73:75 (1973).
  • 21
    Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz, CDE, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard, WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair P C, Stults BR and Tumas WY, Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953 (2001).
  • 22
    Zhang YHP and Mielenz JR, Renewable hydrogen carrier — carbohydrate: constructing the carbon-neutral carbohydrate economy. Energies 4:254 (2011).
  • 23
    Zhou C-H, Beltramini JN, Fana YX and Lu GQ, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527 (2008).
  • 24
    Werpy T and Peterson G, Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Synhtesis. US Department of Energy (2004).
  • 25
    Nakagawa Y and Tomishige K, Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1:179 (2011).
  • 26
    Barbaro P, Liguori F, Linares N and Marrodan CM, Heterogeneous bifunctional metal/acid catalysts for selective chemical process. Eur J Inorg Chem 24:3807 (2012).
  • 27
    Pagaliaro M, Pandarus V, Ciriminna R, Beland F and Cara PD, Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. Chem Cat Chem 4:432 (2012).
  • 28
    Beaumount SK, Heterogeneously catalyzing C-C coupling reactions with precious metal nanoparticles. J Chem Technol Biotechnol 87:595 (2012).
  • 29
    Clements JH, Reactive applications of cyclic alkylene carbonates. Ind Eng Chem Res 42:663 (2003).
  • 30
    Shaikh AA and Sivaram S, Organic Carbonates. Chem Rev 96:951 (1996).
  • 31
    Vauthey L, Valot F, Gozzi C, Fache F and Lemaire M, An environmentally benign access to carbamates and ureas. Tetrahedron Lett 41:6347 (2000).
  • 32
    Sonnati MO, Amigoni S, Taffin de Givenchy EP, Darmanin T, Choulet O and Guittard F, Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem 15:283 (2013).
  • 33
    Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I and Konno S, A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem 5:497 (2003).
  • 34
    Delledonne D, Rivetti F and Romano U, Developments in the production and application of dimethylcarbonate. Appl Catal A 221:241 (2001)
  • 35
    Aresta M and Quaranta E, Carbon dioxide a potential substitute of phosgene. Chemtechnol 32 (1997).
  • 36
    Trost BM, The atom economy - a search for synthetic efficiency. Science 254:1471 (1991).
  • 37
    Anastas PT and Warner JC, Green Chemistry: Theory and Practice. Oxford University Press (1998).
  • 38
    Dai WL, Luo SL Yin SF and Au CT, The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A 366:2 (2009).
  • 39
    Pacheco MA and Marshall CL, Review of dimethyl carbonate (DMC) manufacture and its characteristics as fuel additive. Energy Fuels 11:2 (1997).
  • 40
    Coates GW and Moore DR, Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 34:6618 (2004).
  • 41
    Darensbourg DJ, Mackiewicz RM, Phelps AL and Billodeaux DR, Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acct Chem Res 37:836 (2004).
  • 42
    Ainsworth SJ, Propylene-oxide producers look for ways to counter sluggish market. Chem Eng News 70:9 (1992).
  • 43
    Aresta M, Dibenedetto A, Gianfrate L and Pastore C, Nb(V) compounds as epoxides carboxylation catalysts: the role of the solvent. J Mol Catal A 204–205:245 (2003).
  • 44
    Aresta M, Dibenedetto A, Gianfrate L and Pastore C, Enantioselective synthesis of organic carbonates promoted by Nb(IV) and Nb(V) catalysts. Appl Catal A 255:5 (2003).
  • 45
    Dibenedetto A, Aresta M, Nocito F, Pastero C, Venezia AM, Chirykalova E, Kononeko VI, Shevchenko VG and Chupova IA, Synthesis of cyclic carbonates from epoxides: use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propane. Catal Today 115:117 (2006).
  • 46
    Aresta M, Dibenedetto A, Nocito F and Pastore C, A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A 257:149 (2006).
  • 47
    Dibenedetto A, Aresta M, Distaso M, Pastore C, Venezia AM, Liu CJ and Zhang M, High throughput experiment approach to the oxidation of propene-to propene oxide with transition-metal oxides as O-donors. Catal Today 137:44 (2008).
  • 48
    Aresta M, Quaranta E and Ciccarese A, Direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(I). J Mol Catal 41:355 (1987).
  • 49
    Jacobson SE, EU Patent 117147 (1984).
  • 50
    Fuchs MA Zevaco TA, Ember E, Walter O, Held I, Dinjus E and Doring M, Synthesis of cyclic carbonates from epoxides and carbn dioxide catalyzed by and easy-to-handle ionic iron(III) complex. Dalton Trans 42:5322 (2013).
  • 51
    Melendez J, North M, Villuendas P and Young C, One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Trans 40:3885 (2011).
  • 52
    Aresta M, Dibenedetto A and Tommasi I, Direct synthesis of organic carbonates by oxidative carboxylation of olefins catalyzed by metal oxides: developing green chemistry based on carbon dioxide. Appl Organomet Chem 14:799 (2000).
  • 53
    Eghbali N and Li CL, Conversion of carbon dioxide and olefins into cyclic carbonates in water. Green Chem 9:213 (2007).
  • 54
    Aresta M and Dibenedetto A, Carbon dioxide as building block for the synthesis of organic carbonates, behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. J Mol Catal A 182–183:399 (2002).
  • 55
    Aresta M, Dibenedetto A, Dileo C, Tommasi I and Amodio E, The first synthesis of a cyclic carbonate from a ketal in SC-CO2. J Supercrit Fluids 25:177 (2003).
  • 56
    Uemura K, Kawaguchi T, Takayama H, Nakamura A and Inoue Y, Preparation of alkylidene cyclic carbonates via cyclization of propargylic carbonates. J Mol Catal A 139:1 (1999).
  • 57
    Bhanage BM, Fujita S-I, Ikushima Y and Arai M, Transesterification of urea and ethylene glycol to ethylene carbonate as an important step for urea based dimethyl carbonate synthesis. Green Chem 5:429 (2003).
  • 58
    Fujita S-I, Yamanishi Y, Arai M, Synthesis of glycerol carbonate from glycerol and urea using zinc-containing solid catalysts a homogeneous reaction. J Catal 297:137 (2013).
  • 59
    Aresta M, Dibenedetto A, Nocito F, Ferragina C, Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J Catal 268:106 (2009).
  • 60
    North M, Pasqualea R and Young C, Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514 (2012).
  • 61
    Buysch H-F, Carbonic esters, in Ullmann's Encyclopedia of Industrial Chemistry (2002).
  • 62
    Shaikh AA and Sivaram S, Organic carbonates. Chem Rev 96: 951 (1996).
  • 63
    Xia LF, Li FW, Peng JJ and Xia CG, Immobilized ionic liquid/zinc chloride: heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J Mol Catal A 253: 265 (2006).
  • 64
    Nakagawa Y, Shinmi Y, Koso S and Tomishige K, Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium- modified iridium catalyst. J Catal 272:191 (2010).
  • 65
    Nakagawa Y and Tomishige K, Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136 (2012).
  • 66
    Amada Y, Watanabe H, Tamura M, Nakagawa Y, Okumura K and Tomishige K, Structure of ReOx clusters attached on the Ir metal surface in Ir-ReOx/SiO2 for the hydrogenolysis reaction. J Phys Chem C 116:23503 (2012).
  • 67
    Amada Y, Watanabe H, Hirai Y, Kajikawa Y, Nakagawa Y and Tomisige K, Production of biobutanediols by the hydrogenolysis of erythritol. Chem Sus Chem 5:1991 (2012).
  • 68
    Chen K, Mori K, Watanabe H, Nakagawa Y and Tomishige K, C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J Catal 294:171 (2012).
  • 69
    Nakagawa Y, Ning X, Amada Y and Tomishige K, Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Appl Catal A 433–434:128 (2012).
  • 70
    Koso S, Watanabe H, Okumura K, Nakagawa Y and Tomishige K, Stable low-valence ReOx cluster attached on Rh metal particles formed by hydrogen reduction and its formation mechanism. J Phys Chem C 116:3079 (2012).
  • 71
    Koso S, Watanabe H, Okumura K, Nakagawa Y and Tomishige K, Comparative study of Rh-MoOx and Rh-ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Appl Catal B 111–112:27 (2012).
  • 72
    Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y and Tomishige K, Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst. Appl Catal B 105:117 (2011).
  • 73
    Koso S, Nakagawa Y and Tomishige K, Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. J Catal 280:221 (2011).
  • 74
    Nakagawa Y and Tomishige K, Catalyst development for the hydrogenolysis of biomass-derived chemicals to value-added ones. Catal Surv Asia 15:111 (2011).
  • 75
    Amada Y, Koso S, Nakagawa Y and Tomishige K, Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol. Chem Sus Chem 3:728 (2010).
  • 76
    Ueda N, Nakagawa Y and Tomishige K, Conversion of glycerol to ethylene glycol over Pt-modified Ni catalyst. Chem Lett 39:506 (2010).
  • 77
    Chen K, Koso S, Kubota T, Nakagawa Y and Tomishige K, Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1,6-hexanediol over rhenium-modified carbon-supported rhodium catalysts. Chem Cat Chem 2:547 (2010).
  • 78
    Shinmi Y, Koso S, Kubota T, Nakagawa Y and Tomishige K, Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl Catal B 94:318 (2010).
  • 79
    Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T and Tomishige K, Promoting effect of Mo on hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J Catal 267:89 (2009).
  • 80
    Shimao A, Koso S, Ueda N, Shinmi Y, Furikado I and Tomishige K, Promoting effect of Re addition to Rh/SiO2 on glycerol hydrogenolysis. Chem Lett 38:540 (2009).
  • 81
    Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K and Tomishige K, Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem Commun 2035 (2009).
  • 82
    Miyazawa T, Koso S, Kunimori K and Tomishige K, Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl Catal A 329:30 (2007).
  • 83
    Kusunoki Y, Miyazawa T, Kunimori K and Tomishige K, Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal Commun 6:645 (2005).
  • 84
    Fukuoka A and Dhepe PL, Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 45:5161 (2006).
  • 85
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X and Chen J, Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47: 8510 (2008).
  • 86
    Ruppert AM, Weinberg K and Palkovits R, Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564 (2012).
  • 87
    Gallezot P, Conversion of biomass to selected chemical products.Chem Soc Rev 41:1538 (2012).
  • 88
    Climent MJ, Corma A and Iborra S, Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072 (2011).
  • 89
    Mäki-Arvela P, Salmi T, Holmbom B, Willför S, and Murzin DY, Synthesis of sugars by hydrolysis of hemicelluloses - a review. Chem Rev 111:5638 (2011).
  • 90
    Tomishige K, Sakaihori T, Ikeda Y and Fujimoto K, A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett 58:225 (1999).
  • 91
    Tomishige K, Ikeda Y, Sakaihori T and Fujimoto K, Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192:355 (2000).
  • 92
    Ikeda Y, Sakaihori T, Tomishige K and Fujimoto K, Promoting effect of phosphoric acid on zirconia catalysts in selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 66:59 (2000).
  • 93
    Ikeda Y, Fujimoto K and Tomishige K, Structure and performance of H3PO4/ZrO2 catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide. J Phys Chem B 105:10653 (2001).
  • 94
    Du Y, Kong D-L, Wang H-Y, Cai F, Tian, J-S, Wang J-Q and He L-N, Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A 241:233 (2005).
  • 95
    George J, Patel Y, Pillai SM and Munshi P, Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J Mol Catal A 304:1 (2009).
  • 96
    Huang S-Y, Liu S-G, Li J-P, Zhao N, Wei W and Sun Y-Y, Synthesis of cyclic carbonate from carbon dioxide and diols over metal acetates. J Fuel Chem Technol 35:701 (2007).
  • 97
    Zhao X, Sun N, Wang S, Li F and Wang Y, Synthesis of propylene carbonate from carbon dioxide and 1,2-propylene glycol over zinc acetate catalyst. Ind Eng Chem Res 47:1365 (2008).
  • 98
    Ezhova NN, Korosteleva IG, Kolesnichenko NV, Kuz'min AE, Khadzhiev SN, Vasil'eva MA and Voronina ZD, Glycerol carboxylation to glycerol carbonate in the presence of rhodium complexes with phosphine ligands. Pet Chem 52:91 (2012).
  • 99
    Huang S, Ma J, Li J, Zhao N, Wei W and Sun Y, Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases. Catal Commun 9:276 (2008).
  • 100
    Huang S, Liu S, Li J, Zhao N, Wei W and Sun Y, Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates. Catal Lett 112:187 (2006).
  • 101
    Silva E Da, Dayoub W, Mignani G, Raoul Y and Lemaire M, Propylene carbonate synthesis from propylene glycol, carbon dioxide and benzonitrile by alkali carbonate catalysts. Catal Commun 29:58 (2012).
  • 102
    Du Y, He N and Kong D-L, Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide. Catal Commun 9:1754 (2008).
  • 103
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B and Kunimori K, Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide. Catal Lett 95:45 (2004).
  • 104
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B and Kunimori K, Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem 6:206 (2004).
  • 105
    Tomishige K, Yasuda H, Nurunnabi M, Li B and Kunimori K, Selective formation of ethylene carbonate from ethylene glycol and carbon dioxide over CeO2-ZrO2 solid solution catalysts. Stud Surf Sci Catal 153:165 (2004).
  • 106
    Huang S, Liu S, Li J, Zhao N, Wei W and Sun Y, Modified zinc oxide for the direct synthesis of propylene carbonate from propylene glycol and carbon dioxide. Catal Lett 118:290 (2007).
  • 107
    Tomishige K and Kunimori K, Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl Catal A 237:103 (2002).
  • 108
    Tomishige K, Furusawa Y, Ikeda Y, Asadullah M and Fujimoto K, CeO2-ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 76:71 (2001).
  • 109
    Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Fujimoto K-I and Tomishige K, Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. Chem Sus Chem 6:1341 (2013).
  • 110
    Honda M, Kuno S, Sonehara S, Fujimoto K-I, Suzuki K, Nakagawa Y, and Tomishige K, Tandem carboxylation-hydration reaction system from methanol, CO2 and benzonitrile to dimethyl carbonate and benzamide catalyzed by CeO2. Chem Cat Chem 3:365 (2011).
  • 111
    Honda M, Kuno S, Noorjahan B, Fujimoto K-I, Suzuki K, Nakagawa Y and Tomishige K, Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Appl Catal A 384:165 (2010).
  • 112
    Honda M, Suzuki A, Noorjahan B, Fujimoto K-I, Suzuki K, and Tomishige K, Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chem Commun 4596 (2009).
  • 113
    Santos BAV, Pereira CSM, Silva VMTM, Loureiro JM and Rodrigues AE, Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. Appl Catal A 455:219 (2013).
  • 114
    Yoshida Y, Arai Y, Kado S, Kunimori K and Tomishige K, Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95 (2006).
  • 115
    Tamura M, Wakasugi H, Shimizu K-I and Satsuma A, Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst. Chem Eur J 17:11428 (2011).
  • 116
    Tamura M, Tonomura T, Shimizu K-I and Satsuma A, Transamidation of amides with amines under solvent-free conditions using a CeO2 catalyst. Green Chem 14:717 ( 2012).
  • 117
    Tamura M, Tonomura T, Shimizu K-I and Satsuma A, CeO2-catalyzed one-pot selective synthesis of N-alkyl amides from nitriles, amines and water. Appl Catal A 417– 418:6 (2012).
  • 118
    Tamura M, Tonomura T, Shimizu K-I and Satsuma A, CeO2-catalysed one-pot selective synthesis of esters from nitriles and alcohols. Green Chem 14:984 (2012).
  • 119
    Tamura M, Satsuma A and Shimizu KI, CeO2-catalyzed nitrile hydration to amide: reaction mechanism and active sites. Catal Sci Technol 3:1386 (2013).
  • 120
    Tamura M, Siddiki SMAH and Shimizu K-I, CeO2 as a versatile and reusable catalyst for transesterification of esters with alcohols under solvent-free conditions. Green Chem 15:1641 (2013).
  • 121
    Tamura M, Shimizu K-I and Satsuma A, CeO2-catalyzed transformations of nitriles and amides. Chem Lett 41:1397 (2012).
  • 122
    Miller K, Neilan B and Sze DMY, Development of Taxol and other endophyte produced anti-cancer agents. Recent Pat Anticancer Drug Discov 3:14 (2008).
  • 123
    Mukhtar TA and Wright GD, Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105:529 (2005).
  • 124
    Vintonyak VV, Calà M, Lay F, Kunze B, Sasse F and Maier ME, Synthesis and biological evaluation of cruentaren A analogues. Chem Eur J 14:3709 (2008).
  • 125
    Gzara L, Chagnes A, Carré B, Dhahbi M and Lemordant D, Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries? J Power Sources 156:634 (2006).
  • 126
    Selvakumar N, Srinivas D, Khera MK, Kumar MS, Mamidi RN, Sarnaik H, Charavaryamath C, Rao BS, Raheem MA, Das J, Iqbal J, Rajagopalan R, Synthesis of conformationally constrained analogues of linezolid:  structure−activity relationship (SAR) studies on selected Novel tricyclic oxazolidinones. J Med Chem 45:3952 (2002).
  • 127
    Evans DA, Bartroli J and Shih TL, Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J Am Chem Soc 103:2127 (1981).
  • 128
    Ager DJ, Prakash I and Schaad DR, 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 96:835 (1996).
  • 129
    Miller AW and Nguyen ST, (Salen)chromium(III)/DMAP:  An efficient catalyst system for the selective synthesis of 5-substituted oxazolidinones from carbon dioxide and aziridines. Org Lett 6:2301 (2004).
  • 130
    Yang Z-Z, Li Y-N, Wei Y-Y and He L-N, Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chem 13:2351 (2011).
  • 131
    Kubota Y, Kodaka M, Tomohiro T and Okuno H, Formation of cyclic urethanes from amino alcohols and carbon dioxide using phosphorus(III) reagents and halogenoalkanes. J Chem Soc Perkin Trans 1:5 (1993).
  • 132
    Kodaka M, Tomohiro T, Lee AL and Okuno H, Carbon dioxide fixation forming oxazolidone coupled with thiol/Fe4S4 cluster redox system. J Chem Soc Chem Commun 1479 (1989).
  • 133
    Kodaka M, Tomohiro T and Okuno H, The mechanism of the Mitsunobu reaction and its application to CO2 fixation. J Chem Soc Chem Commun 81 (1993).
  • 134
    Dinsmore CJ and Mercer SP, Carboxylation and Mitsunobu reaction of amines to give carbamates:  retention vs inversion of configuration is substituent-dependent. Org Lett 6:2885 (2004).
  • 135
    Paz J, Pérez-Balado C, Iglesias B and Muñoz L, Carbon dioxide as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-oxazinones, and cyclic ureas: scope and limitations. J Org Chem 75:3037 (2010).
  • 136
    Matsuda H, Baba A, Nomura R, Kori M and Ogawa S, Improvement of the process in the synthesis of 2-oxazolidinones from 2-amino alcohols and carbon dioxide by use of triphenylstibine oxide as catalyst. Ind Eng Chem Prod Res Dev 24:239 (1985).
  • 137
    Tominaga K and Sasaki Y, Synthesis of 2-oxazolidinone from CO2 and 1,2-aminoalcohols catalyzed by n-Bu2SnO. Synlett 2:307 (2002).
  • 138
    Fujita S, Kanamaru H, Senboku H and Arai M, Preparation of cyclic urethanes from amino alcohols and carbon dioxide using ionic liquid catalysts with alkali metal promoters. Int J Mol Sci 7:438 (2006).
  • 139
    Bhanage BM, Fujita S, Ikushima Y and Arai M, Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem 5:340 (2003).
  • 140
    Tamura M, Honda M, Noro K, Nakagawa Y and Tomishige K, Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent. J Catal 305:191 (2013).
  • 141
    Juárez R, Concepción P, Corma A and García H, Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by ω-aminoalcohols. Chem Commun 46:4181 (2010).
  • 142
    Mitsudo T-A, Hori Y, Yamakawa Y and Watanabe Y, Ruthenium catalyzed selective synthesis of enol carbamates by fixation of carbon dioxide. Tetrahedron Lett 28:4417 (1987).
  • 143
    Bacchi A, Chiusoli GP, Costa M, Gabriele B, Righi C and Salerno G, Palladium-catalysed sequential carboxylation–alkoxycarbonylation of acetylenic amines. Chem. Commun 1209 (1997).
  • 144
    Kayaki Y, Mori N and Ikariya T, Palladium-catalyzed carboxylative cyclization of α-allenyl amines in dense carbon dioxide. Tetrahedron Lett 50:6491 (2009).
  • 145
    Fournier J, Bruneau C and Dixneuf PH, A simple synthesis of oxazolidinones in one step from carbon dioxide. Tetrahedron Lett 31:1721 (1990).
  • 146
    Jiang H-F and Zhao J-W, Silver-catalyzed activation of internal propargylic alcohols in supercritical carbon dioxide: efficient and eco-friendly synthesis of 4-alkylidene-1,3-oxazolidin-2-ones. Tetrahedron Lett 50:60 (2009).
  • 147
    Honda M, Sonehara S, Yasuda H, Nakagawa Y and Tomishige K, Heterogeneous CeO2 catalyst for one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chem 13:3406 (2011).
  • 148
    Frain D, Kirby F, McArdle P and O'Leary P, Asymmetric synthesis of cis-7-methoxycalamenene via the intramolecular buchner reaction of an α-diazoketone. Org Chem Int (2012), Article ID 293945.
  • 149
    Adams JL, Meek TD, Mong SM, Johnson RK and Metcalf BW, cis-4-Carboxy-6-(mercaptomethyl)-3,4,5,6-tetrahydropyrimidin-2(1H)-one a potent inhibitor of mammalian dihydroorotase. J Med Chem 31:1355 (1988).
  • 150
    Gayathri P, Pandey V, Sivakumar R and Gupta SP, A quantitative structure–activity relationship study on some HIV-1 protease inhibitors using molecular connectivity index. Bioorg Med Chem 9:3059 (2001).
  • 151
    Katritzky AR, Oliferenko A, Lomaka A and Karelson M, Six-membered cyclic ureas as HIV-1 protease inhibitors a QSAR study based on CODESSA PRO approach. Bioorg Med Chem Lett 12:3454 (2002).
  • 152
    Pelosi S and Salvatore Jr, Imidazolidinone compounds. WO93/04060 (1993).
  • 153
    Jagtap SR, Patil YP, Fujita S-I, Arai M and Bhanage BM, Heterogeneous base catalyzed synthesis of 2-oxazolidinones/2-imidiazolidinones via transesterification of ethylene carbonate with β-aminoalcohols/1,2-diamines. Appl Catal A 341:133 (2008).
  • 154
    Xiao L-F, Xu L-W and Xia C-G, A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and β-aminoalcohols or 1,2-diamines. Green Chem 9:369 (2007).
  • 155
    Pulla S, Unnikrishnan V, Ramidi P, Sullivan SZ, Ghosh A, Dallas JL and Munshi P, Interaction of substrate and catalyst during the formation of oxazolidinones from 2-aminoalcohols and diethyl carbonate using recyclable 1,3-dichlorodistannoxanes. J Mol Catal A 338:33 (2011).
  • 156
    Paz J, Pérez-Balado C, Iglesias B and Muñoz L, Carbon dioxide as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-oxazinones, and cyclic ureas: scope and limitations. J Org Chem 75:3037 (2010).
  • 157
    Nomura R, Hasegawa Y, Ishimoto M, Toyosaki T and Matsuda H, Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst. J Org Chem 57:7339 (1992).
  • 158
    Kimura T, Kamata K and Mizuno N, A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51:6700 (2012).
  • 159
    Bhanage BM, Fujita S, Ikushima Y and Arai M, Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem 5:340 (2003).
  • 160
    Wu C, Cheng H, Liu R, Wang Q, Hao Y, Yua Y and Zhao F, Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chem 12:1811 (2010).
  • 161
    Tamura M, Noro K, Honda M, Nakagawa Y and Tomishige K, Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chem 15:1567 (2013).
  • 162
    Primo A, Aguado E and Garcia H, CO2-fixation on aliphatic α,ω-diamines to form cyclic ureas, catalyzed by ceria nanoparticles that were obtained by templating with alginate. Chem Cat Chem 5:1020 (2013).
  • 163
    Kong D-L, He L-N and Wang J-Q, Synthesis of urea derivatives from CO2 and amines catalyzed by polyethylene glycol supported potassium hydroxide without dehydrating agents. Synlett 8:1276 (2010).
  • 164
    North M, Wang B and Young C, Influence of flue gas on the catalytic activity of an immobilized aluminium(salen) complex for cyclic carbonate synthesis. Energy Environ Sci 4:4163 (2011).
  • 165
    Metcalfe IS, North M, Pasquale R and Thursfield A, An integrated approach to energy and chemicals production. Energy Environ Sci 3:212 (2010).
  • 166
    North M, Villuendas P and Young C, A gas-phase flow reactor for ethylene carbonate synthesis from waste carbon dioxide. Chem Eur J 15:11454 (2009).