SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    BRDB, Increasing Feedstock Production for Biofuels. Biomass Research and Development Board (US) (2009).
  • 2
    Aresta M, Dibenedetto A and He LN, Analysis of demand for captured CO2 and products from CO2 conversion. TCGR Report (2013).
  • 3
    Solieman AAA, Dijkstra JW, Haije WG, Cobden PD and vander Brink RW, Calcium oxide for CO2 capture: operational window and efficiency penalty in sorption-enhanced steam methane reforming. Int J GHG Control 3:393400 (2009).
  • 4
    Notz RJ, Tonnies I, McCann N, Scheffknecht G and Hasse H, CO2 capture for fossil fuel-fired power plant. Chem Eng Technol 34:167172 (2011).
  • 5
    Aresta M and Dibenedetto A, New amines for the reversible absorption of carbon dioxide from gas mixture. In Greenhouse Gas Control Technlogies, ed by Gale J and Kaya Y. 2:15991602 (2003).
  • 6
    Dibenedetto A, Pastore C, Fragale C and Aresta M, Hybrid materials for CO2 uptake from simulated flue gases: xerogels containing diamines. ChemSusChem 1:742745 (2008).
  • 7
    Wang D, Sentorun-Shalaby C, Ma X and Song C, High-capacity and low-cost carbon-based ‘molecular basket’ sorbent for CO2 capture from flue gas. Energy Fuels 25:456458 (2011).
  • 8
    Lu BH, Jin JJ, Zhang L and Li W, Absorption of carbon dioxide into aqueous blend of monoethanolamine and 1-butyl-3-methylimidazolium tetrafluoroborate. Int J GHG Control 11:152157 (2012).
  • 9
    Wagner M, von Harbou I, Kim J, Ermatchkova I, Maurer G and Hasse H, Solubility of carbon dioxide in aqueous solutions of monoethanolamine in the low and high gas loading regions. J Chem Eng Data 58:883895 (2013).
  • 10
    Maroto-Valer M (ed), Development and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology. Woodhead Publishing Limited, Cambridge (2010).
  • 11
    Solvay E, Manufacture of soda by ammonia process. US263981 (1882).
  • 12
    Bosch C and Meiser B, Process of manufacturing urea. US1429483 (1922).
  • 13
    Kaasenbrood PJC, Preparation of urea in combination with the synthesis of ammonia. US 3647872, (1972).
  • 14
    Kolbe H, Ueber synthese der salicylsäure. Annalen der Chemie und Pharmacie 113:125127 (1860).
  • 15
    Schmitt R, Beitrag zur Kenntniss der Kolbe'schen Salicylsäure Synthese. J Prakt Chem 31:397411 (1885).
  • 16
    Lee S, Methanol synthesis from syngas. In Handbook of Alternative Fuel Technologies, ed by Lee S, Speight JG and Loyalka SK. CRC Press, 297322 (2007).
  • 17
    De Pasquale RL, Unusual catalysis with nickel(0) complexes. J Chem Soc Chem Commun 157158 (1973).
  • 18
    Aresta M, Nobile CF, Albano VG, Forni E and Manassero M, New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun 636637 (1975).
  • 19
    Metz B, Davidson O, De Coninck HC, Loos M and Meyer LA, Special Report on Carbon Dioxide Capture and Storage IPCC. Cambridge University Press, Cambridge and New York (2005).
  • 20
    Aresta M and Quaranta E, Carbon dioxide: a substitute for phosgene. Chem Technol 27:3240 (1997).
  • 21
    Bruneau C and Dixneuf PH, Catalytic incorporation of CO2 into organic substrates: synthesis of unsaturated carbamates, carbonates and ureas. J Mol Catal 74:97107 (1992).
  • 22
    McGee WD, Pan Y and Riley DP, Highly selective generation of urethanes from amines, carbon dioxide and alkyl chlorides. J Chem Soc Chem Commun 6:699700 (1994).
  • 23
    Behr A, Juszak KD and Keim W, Synthese von 2-Ethyliden-6-hepten-5-olid. Synthese 7:574 (1983).
  • 24
    Reetz MT, Konen W and Strack T, Supercritical carbon dioxide as a reaction medium and reaction partner. Int J Chem 47:493493 (1993).
  • 25
    Jessop PG, Ykariya T and Noyori R, Homogeneous hydrogenation of carbon dioxide. Chem Rev 95:259272 (1995).
  • 26
    Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W and Sun Y, A short review of catalysis for CO2 conversion. Catal Today 148:221231 (2009).
  • 27
    Dai WL, Luo SL, Yin SF and Au CT, The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A: Gen 366:212 (2009).
  • 28
    Raudaskoski R, Turpeinen E, Lenkkeri R, Pongracz E and Keiski RL, Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper based zirconia containing catalysts. Catal Today 144:31823 (2009).
  • 29
    Aresta M, Dibenedetto A and Pastore C, TOPCOMBI EU Project, Final Report (2010).
  • 30
    Aresta M, Contribution of carbon dioxide utilization to carbon mitigation: opportunities and challenges. 241st ACS National Meeting, Anaheim Physical Chemistry Division, 208 (2011).
  • 31
    Olah GA, Goeppert GA and Prakash GKS, Beyond Oil and Gas: The Methanol Economy. Wiley-VCH, Weinheim (2009).
  • 32
    The Toxicology of Methanol, 1st Edn, ed by Clary JJ. John Wiley & Sons, Inc. (2013).
  • 33
    Asinger F (ed), Methanol: Chemie- und Energierohstoff. Springer, Heidelberg (1986).
  • 34
    Perry JH and Perry CP, Methanol: Bridge to a Renewable Energy Future. University Press of America, Lanham, MD (1990).
  • 35
    Paul JK, Methanol Technology and Application in Motor Fuels. Noyes Data Corp., Park Ridge, NJ (1978).
  • 36
    Gray CL, Alson JA, Moving America to Methanol. University of Michigan Press, Ann Arbor (1985).
  • 37
    Methanol as an Alternative Fuel Choice: An Assessment, ed by Kohl WL. John Hopkins Foreign Policy Institute, Washington, DC (1990).
  • 38
    Olah GA, Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104107 (2013).
  • 39
    Rostrup-Nielsen J, Concepts in Syngas Manufacture. Imperial College Press, London (2011).
  • 40
    Song C, Tri-reforming: a new process for reducing CO2 emissions. Chem Innov 31:2126 (2001).
  • 41
    Song C, Tri-reforming: a novel concept for CO2 conversion to syngas with desired H2/CO ratio using flue gas of power plants without CO2 separation. Abstracts of the Seventh International Conference on Carbon Dioxide Utilization, Seoul, Korea, October 12–16, 121122 (2003).
  • 42
    Wesselbaum S, vom Stein T, Klankermayer J and Leitner W, Hydrogenation of carbon dioxide to methanol by using a homogeneous Ruthenium–Phosphine catalyst. Angew Chem Int Ed 51:74997502 (2012).
  • 43
    Huff CA and Sanford MS, Cascade catalysis for the homogeneous hydrogenation of carbon dioxide to methanol. J Am Chem Soc 133:1812218125 (2011).
  • 44
    Li Y, Junge K and Beller M, Improving the efficiency of the hydrogenation of carbonates and carbon dioxide to methanol. ChemCatChem 5:10721074 (2013).
  • 45
    Raudaskoski R, Turpeinen E, Lenkkeri R, Pongracz E and Keiski RL, Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144:318323 (2009).
  • 46
    Ma J, Sun N, Zhang X, Zhao N, Xiao F and Wei W, A short review of catalysis for CO2 conversion. Catal Today 148:221231 (2009).
  • 47
    Toyir J, de la Piscina PR, Fierro JLG and Homs N, Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter. Appl Catal B: Environ 29:20715 (2001).
  • 48
    Toyir J, de la Piscina PR, Fierro JLG and Homs N, Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B: Environ 34:25566 (2001).
  • 49
    Fujita S, Moribe S, Kanamori Y, Kakudate M and Takezawa N, Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2: effects of the calcination and reduction conditions on the catalytic performance. Appl Catal A: Gen 207:121128 (2001).
  • 50
    Toyir J, Miloua R, Elkadri NE, Nawdali M, Toufik H and Miloua F, Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia 2:10751079 (2009).
  • 51
    Fujitani T and Nakamura J, The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl Catal A: Gen 191:111129 (2000).
  • 52
    Guo X, Mao D, Lu G, Wang S and Wu G, Glycine-nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271:178185 (2010).
  • 53
    Guo X, Mao D, Wang S, Wu G and Lu G, Combustion synthesis of CuO–ZnO–ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol. Catal Commun 10:16611664 (2009).
  • 54
    Kakumoto T and Watanabe T, A theoretical study for methanol synthesis by CO2 hydrogenation. Catal Today 36:3944 (1997).
  • 55
    Saito M, Fujitani T, Takahara I, Watanabe T, Takeuchi M and Kanai Y, Development of Cu/ZnO-based high performance catalysts for methanol synthesis by CO2 hydrogenation. Energy Convers Manage 36:577580 (1995).
  • 56
    Kanai Y, Watanabe T, Fujitani T, Saito M, Nakamura J and Uchijima T, Role of ZnO in promoting methanol synthesis over a physically-mixed Cu/SiO2 and ZnO/SiO2 catalyst. Energy Convers Manage 36:649652 (1995).
  • 57
    Nakamura J, Uchijima T, Kanai Y and Fujitani T, The role of ZnO in Cu/ZnO methanol synthesis catalysts. Catal Today 28:223230 (1996).
  • 58
    Yu KMK, Curcic I, Gabriel J and Tsang SCE, Recent advances in CO2 capture and utilization. ChemSusChem 1:893899 (2008).
  • 59
    Olah GO, Goeppert A and Prakash GKS, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487498 (2009).
  • 60
    Zangeneh FT, Sahebdelfar S and Ravanchi MT, Conversion of carbon dioxide to valuable petrochemicals: an approach to clean development mechanism. J Nat Gas Chem 20:219231 (2011).
  • 61
    Slocynski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M and Skrzypek J, Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl Catal A: Gen 310:127137 (2006).
  • 62
    Liaw J and Chen YZ, Liquid-phase synthesis of methanol from CO2/H2 over ultrafine CuB catalysts. Appl Catal A: Gen 206:245256 (2001).
  • 63
    Saito M and Murata K, Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction. Catal Survey Asia 8:285294 (2004).
  • 64
    Nitta Y, Suwata O and Okamoto Y, Copper-zirconia catalysts for methanol synthesis from carbon dioxide: effect of ZnO addition to Cu-ZrO2catalysts. Catal Lett 26:345354 (1994).
  • 65
    Arena F, Barbera K, Italiano G, Bonura G, Spadaro L and Frusteri F, Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249:185194 (2007).
  • 66
    Lunsford JH, Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63:165174 (2000).
  • 67
    Li J, Wei Y, Liu G, Qi Y, Tian P, Li B, He Y and Liu Z, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: correlating catalytic performance and reaction mechanism to zeolite topology. Catal Today 171:221228 (2011).
  • 68
    ICIS.com, ICIS Chemical Business 2013.
  • 69
    Obert R and Dave BC, Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol–gel matrices. J Am Chem Soc 121:1219212193 (1999).
  • 70
    Aresta M, CO2 enzymatic carboxylation and reduction to methanol. International Scientific Forum on CO2 Chemistry and Biochemistry, CO2 Challenge Forum, Lyon (2010).
  • 71
    Jiang Z, Xu S and Wu H, Novel conversion of carbon dioxide to methanol catalyzed by Sol–gel immobilized dehydrogenases. International Conference on Carbon Dioxide Utilization ICCDU VII, Seoul-Korea (2003).
  • 72
    Xu S, Lu Y, Li J, Jiang Z and Wu H, Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG−SiO2) hybrid gel. Ind Eng Chem Res 45:45674573 (2006).
  • 73
    Dibenedetto A, Stufano P, Baran T, Macyk W and Aresta M, Hybrid technologies for an enhanced carbon recycling based on enzymatic CO2 reduction to methanol in water. International Conference on Carbon Dioxide Utilization ICCDU XI, Dijon (2011).
  • 74
    Dibenedetto A, Angelini A, Aresta M, Macyk W and Baran T, Nanomaterials as photocatalysts for the CO2 reduction to methanol in water. International Conference on Carbon Dioxide Utilization ICCDU XII, Alexandria (VA) (2013).
  • 75
    Dibenedetto A, Baran T, Macyk W and Aresta M, Photonanomaterials for CO2 reduction to methanol. 245th ACS National Meeting New Orleans (2013).
  • 76
    Dibenedetto A, Stufano P, Angelini A, Fragale C, Aresta M and Costa M, Hybrid technologies for an enhanced carbon recycling based on enzymatic CO2 reduction to methanol in water: chemical and photochemical NADH regeneration. ChemSuschem 5:373378 (2012).
  • 77
    Song J, Kim Y, Lim M, Lee H, Lee JI and Shin W, Microbes as electrochemical CO2 conversion catalysts. ChemSusChem 4:587590 (2011).
  • 78
    Inoue T, Fujishima A, Satoshi S and Honda K, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637638 (1979).
  • 79
    Sasirekha N, Basha SJS and Shanthi K, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl Catal B: Environ 62:169180 (2006).
  • 80
    Fan J, liu EZ, Tian L, Hu X-Y, He Q and Sun T, Synergistic effect of N and Ni2+ on nanotitania in photocatalytic reduction of CO2. J Environ Eng 137:171176 (2011).
  • 81
    Wang Z, Li F, Yang C, Zhang W and Wu J, Photocatalytic reduction of CO2 using Cu/S-TiO2 prepared by eletroless plating method. Adv Mater Res 233–235:589595 (2011).
  • 82
    Tsai C-W, Chen HM, Liu R-S, Asakura K and Chan T-S, Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J Phys Chem C 115:1018010186 (2011).
  • 83
    Benson EE, Kubiak CP, Sathrum AJ and Smieja JM, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38: 89 (2009).
  • 84
    Barton Cole E and Bocarsly AB, Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. in CO2 as Chemical Feedstock. ed by Aresta M. Wiley-VCH, Weinheim, 291316 (2010).
  • 85
    Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E and Bocarsly AB, Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:1153911551 (2010).
  • 86
    Meshitsuka S, Ichikawa M and Tamaru K, Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J Chem Soc Chem Commun 158159 (1974).
  • 87
    Hammouche M, Lexa D, Momenteau M and Savéant JM, Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron (“0”) porphyrins. Role of the addition of magnesium cations. J Am Chem Soc 113:84558466 (1991).
  • 88
    Riquelme MA, Isaacs M, Lucero M, Trollund E and Aguirre MJ, Electrocatalytic reduction of carbon dioxide at polymeric cobalt tetra (3-amino (phenyl) porphyn glassy carbon-modified electrodes. J Chil Chem Soc 48:8992 (2003).
  • 89
    Boro BJ, Bullock M and Dubois D, Preparation of nickel and palladium electrocatalysts for the reduction of CO2. 240th ACS National Meeting, Boston, Inorganic Chemistry Division, Publication 229 (2010).
  • 90
    Dubois D, Boro BJ, Galan B, Linehan JC, Schoffel J and Kubiak C, Design of molecular electrocatalysts for carbon dioxide reduction and formate oxidation. 241st ACS National Meeting, Anaheim, Physical Chemistry Division, Publication 130 (2011).
  • 91
    Sakakura T, Choi J-C and Yasuda H, Transformation of carbon dioxide. Chem Rev 107:23652387 (2007).
  • 92
    Kuhl KP, Cave ER, Abram DN and Jaramillo TF, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:70507059 (2012).
  • 93
    Angamuthu R, Byers P, Lutz M, Spek Al and Bouwman E, Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327: 313315 (2010).
  • 94
    Dibenedetto A and Ballivet-Tkatchenko D, Synthesis of linear and cyclic carbonates. In Carbon Dioxide as Chemical Feedstock, ed by Aresta M. Wiley VCH (2010).
  • 95
    Dibenedetto A and Angelini A, Synthesis of organic carbonates. In Advances in Inorganic Chemistry, Volume 66, ed by Van Eldik R and Aresta M (2013) in press.
  • 96
    Cant NW and Hall WK, Catalytic oxidation: VI. Oxidation of labeled olefins over. silver J Catal 52:8194 (1978).
  • 97
    Clerici MG, Belussi G and Romano U, Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159167 (1991).
  • 98
    Clerici MG and Ingallina P, Oxidation reactions with in situ generated oxidants. Catal Today 41:351364 (1998).
  • 99
    Hayashi T, Tanaka K and Haruta M, Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566575 (1998).
  • 100
    Uphade BS, Tsubota S, Hayashi T and Haruta M, Selective oxidation of propylene oxide or propinaldehyde over Au supported on titanosilicates in the presence of H2 and O2. Chem Lett 27:12771278 (1998).
  • 101
    Duma V and Honicke D, Gas phase epoxidation of propene by nitrous oxide over silica-supported iron oxide catalysts. J Catal 191:93104 (2000).
  • 102
    Stangland EE, Stavens KB, Andres RP and Delgass WN, Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide. J Catal 191:332347 (2000).
  • 103
    Jenzer G, Mallat T, Maciejewski M, Eigenmann F and Baiker A, Continuous epoxidation of propylene with oxygen and hydrogen on a Pd–Pt/TS-1 catalyst. Appl Catal A: Gen 208:125133 (2001).
  • 104
    Aresta M, Dibenedetto A, Nocito F, Pastore C, Venezia AM, Chirykalova E, Kononenko VI, Shevchenko VG and Chupova IA, Synthesis of cyclic carbonates from epoxides: use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propene. Catal Today 115:117123 (2006).
  • 105
    Dibenedetto A, Aresta M, Distaso M, Pastore C, Venezia AM, Liu CJ and Zhang M, High throughput experiment approach to the oxidation of propene-to-propene oxide with transition-metal oxides as O-donors. Catal Today 137:4451 (2008).
  • 106
    Chen F, Dong T, Xu T, Li X and Hu C, Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2(acac)2-quaternary ammonium salt system. Green Chem 13:25182524 (2011).
  • 107
    North M, Villuendas P and Young C, Inter- and intramolecular phosphonium salt cocatalysis in cyclic carbonate synthesis catalysed by a bimetallic aluminium(salen) complex. Tetrahedron Lett 53:27362740 (2012).
  • 108
    Zhou X, Hang Y, Yang X, Yao J and Wang G, Hydrated alkali metal halides as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. Chinese J Catal 31:765768 (2010).
  • 109
    Kuran W and Listos T, Initiation and propagation reactions in the copolymerization of epoxide with carbon dioxide by catalysts based on diethylzinc and polyhydric phenol. Macromol Chem Phys 195:977984 (1994).
  • 110
    Sun J, Wang L, Zhang S, Li Z, Zhang X, Dai W and Mori R, ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J Mol Catal A: Chem 256:295300 (2006).
  • 111
    Lu X-B, Wang H and He R, Aluminum phthalocyanine complex covalently bonded to MCM-41 silica as heterogeneous catalyst for the synthesis of cyclic carbonates. J Mol Catal A: Chem 186:3342 (2002).
  • 112
    Aresta M, Dibenedetto A, Gianfrate L and Pastore C, Nb(V) compounds as epoxides carboxylation catalysts: the role of the solvent. J Mol Cat A: Gen 204–205:245252 (2003).
  • 113
    Aresta M, Dibenedetto A, Gianfrate L and Pastore C, Enantioselective synthesis of organic carbonates promoted by Nb(IV) and Nb(V) catalysts. Appl Catal A: Gen 255:511 (2003).
  • 114
    Fujinami T, Suzuki T, Kamiya M, Fukuzawa S and Sakai S, Palladium catalyzed reaction of butadiene monoxide with carbon dioxide. Chem Lett 2:199200 (1985).
  • 115
    Lu XB and Darensbourg DJ, Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:14621484 (2012).
  • 116
    Welton T, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:20712083 (1999).
  • 117
    Wasserscheid P and Keim W, Ionic liquids-new ′solutions' for transition metal catalysis. Angew Chem Int Ed 39:37723789 (2000).
  • 118
    Sheldon R, Catalytic reactions in ionic liquids. Chem Commun 23992407 (2001).
  • 119
    Brown RA, Pollet P, MecKoon E, Eckert CA, Liotta CL and Jessop PG, Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide. J Am Chem Soc 123:12541255 (2001).
  • 120
    Zhao D-B, Wu M, Kou Y and Min E-Z, Ionic liquids: applications in catalysis. Catal Today 74:157189 (2002).
  • 121
    Jairton D, Roberto FDS and Paulo AZS, Ionic liquid (Molten Salt) phase organometallic catalysis. Chem Rev 102:36673692 (2002).
  • 122
    Peng JJ and Deng YQ, Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25:639641 (2001).
  • 123
    Kawanami H, Sasaki A, Matsui K and Ikushima Y, A rapid and effective synthesis of propylene carbonate using a supercritical CO2–ionic liquid system. Chem Commun 896897 (2003).
  • 124
    Li FW, Xiao LF, Xia CG and Hu B, Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Lett 45:83078310 (2004).
  • 125
    Sun JM, Fujita SI and Arai M, Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J Organomet Chem 690:34903497 (2004).
  • 126
    Kim HS, Jelliarko P, Lee JS, Lee SY, Kim H, Lee SD and Ahn BS, Decomposition of ethylene carbonate in the presence of ionic liquid-based zinc tetrahalide catalysts. Appl Catal A 288:4852 (2005).
  • 127
    Sun J, Zhang SJ, Cheng WG and Ren JY, Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett 49:35883591 (2008).
  • 128
    Sun J, Ren J, Zhang S and Cheng W, Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett 50:423426 (2009).
  • 129
    Kawanami H and Ikushima Y, Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem Commun 20892090 (2000).
  • 130
    Xie H, Li S and Zhang S, Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. J Mol Catal A: Chem 250:3034 (2006).
  • 131
    Bai D, Wang X, Song Y, Li B, Zhang L, Yan P and Jing H, Bifunctional metalloporphyrins-catalyzed coupling reaction of epoxides and CO2 to cyclic carbonates. Chinese J Catal 31:17680 (2010).
  • 132
    Roeser J, Kailasam K and Thomas A, Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. ChemSusChem 5:17931799 (2012).
  • 133
    Watile RA, Deshmukh KM, Dhake KP and Bhanage BM, Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catal Sci Technol 2:10511055 (2012).
  • 134
    Jacobson SE, Process for the production of alkylene carbonates and oxides EP 118248. The HALCON SD Group, Inc New York USA (1984).
  • 135
    Jacobson SE, Process for production of olefin oxides and ketones EP 117147. The HALCON SD Group, Inc., New York, USA (1984).
  • 136
    Aresta M, Quaranta E and Ciccarese, A direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(I). J Mol Catal 41:355359 (1987).
  • 137
    Aresta M and Dibenedetto A, Carbon dioxide as building block for the synthesis of organic carbonates: Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. J Mol Catal 182–183:399409 (2002).
  • 138
    Aresta M, Ciccarese A and Quaranta E, Head to head and head to tail coupling of allene and co-condensation with carbon dioxide promoted by 1.2-bis (diphenylphosphino) ethane tetraphenylborate) rhodium. C1 Mol Chem 1:283295 (1985).
  • 139
    Aresta M, Quaranta E and Tommasi I, The role of metal centres in reduction and carboxylation reaction utilizing carbon dioxide. New J Chem 18:133142 (1994).
  • 140
    Aresta M, Dibenedetto A and Tommasi I, Unique evidence for a RhIII to RhI reduction by deoxygenation of a carbonate moiety to CO2 by an out-of-sphere phosphane. Eur J Inorg Chem 18011806 (2001).
  • 141
    Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M and Maeshima T, Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem Commun 11291130 (1997).
  • 142
    Yamaguchi K, Ebitani K, Yoshida T, Yoshida H and Kaneda K, Mg-Al mixed oxides as highly active acid–base catalyst for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 121:45264527 (1999).
  • 143
    Aresta M and Dibenedetto A, Nb2O5 as catalyst in the fixation of carbon dioxide into epoxides to afford organic carbonates with retention of stereochemistry. 221st National Meeting, ACS, San Diego - CA, April 1–5, Organic Division. Abstract n 220 (2001).
  • 144
    Zhang X, Zhao N, Wei W and Sun Y, Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal Today 115:102106 (2006).
  • 145
    Darensbourg DJ and Zimmer MS, Copolymerization and terpolymerization of CO2 and epoxides using a soluble zinc crotonate catalyst precursor. Macromol 32:21372140 (1999).
  • 146
    Aresta M, Dibenedetto A, Dileo C, Tommasi I and Amodio E, The first synthesis of a cyclic carbonate from a ketal in SC-CO2. J Supercrit Fluids 25:177182 (2003).
  • 147
    Sasaki Y, Reaction of carbon dioxide with propargyl alcohol catalyzed by a combination of Ru3(CO)12 and Et3N. Tetrahedron Lett 27:15731574 (1986).
  • 148
    Inoue Y, Ishikawa J, Taniguchi M and Hashimoto H, Cobaltocene-catalyzed reaction of carbon dioxide with propargyl alcohols. Bull Chem Soc Jpn 60:12041206 (1987).
  • 149
    Iritani K, Yanagihara N and Utimoto K, Carboxylative coupling of propargylic alcohols with allyl chloride. J Org Chem 51:54995501 (1986).
  • 150
    Inoue Y, Itoh Y, Yen IF and Imaizumi S, Palladium(0)-catalyzed carboxylative cyclized coupling of propargylic alcohol with aryl halides. J Mol Catal 60:L1L3 (1990).
  • 151
    Jang HF, Wang AZ, Liu HL and Qi CR, Reusable polymer-supported amine-copper catalyst for the formation of α-Alkylidene cyclic carbonates in supercritical carbon dioxide. Eur J Org Chem 13:23092312 (2008).
  • 152
    Uozumi Y, Osako T Jiang HF, Wang AZ, Liu HL and Qi CR, Synthesis of α-Alkylidene Cyclic Carbonates. Synfacts 7:07710771 (2008).
  • 153
    Laas H, Nissen A and Nurrenbach A, Eine einfache Synthese von 3H-Indolen ausgehend von acetylenischen Alkoholen. Synthesis 12:958959 (1981).
  • 154
    Kim HS, Kim JW, Kwon SC, Shim SC and Kim TJ, Catalytic formation of carbamates and cyclic carbonates by copper complex of 2,5,19,22-tetraaza[6,6](1,1′)ferrocenophane-1,5-diene X-ray crystal structure of [Cu(1)]PF6. J Organomet Chem 545–546:337344 (1997).
  • 155
    Kwon SC, Cho CS, Shim SC and Kim TJ, Catalytic formation of cyclic carbonates and carbamates by Cu(1)(BF4)2 (1=2,5,19,22- tetraaza 6,6(1,1') ferrocenophane-1,5-diene). Bull Korean Chem Soc 20:103105 (1999).
  • 156
    Fournier J, Bruneau C and Dixneuf PH, Phosphine catalysed synthesis of unsaturated cyclic carbonates from carbon dioxide and propargylic alcohols. Tetrahedron Lett 30:39813982 (1989)
  • 157
    Joumier JM, Fournier J, Bruneau C and Dixneuf PH, Functional carbonates: cyclic α-methylene and β-oxopropyl carbonates from prop-2-ynyl alcohol derivatives and CO2. J Chem Soc Perkin Trans 1:32713274 (1991).
  • 158
    Bruneau C and Dixneuf PH, Catalytic incorporation of CO2 into organic substrates: synthesis of unsaturated carbamates, carbonates and ureas. J Mol Catal 74:97107 (1992).
  • 159
    Gu Y, Shi F and Deng Y, Ionic liquid as an efficient promoting medium for fixation of CO2: clean synthesis of α-methylene cyclic carbonates from CO2 and propargyl alcohols catalyzed by metal salts under mild conditions. J Org Chem 69:391394 (2004).
  • 160
    Kayaki H and Ikarya T, Method for producing α-alkylidene-1,3-dioxolan-2-one Japanese Patent 137733 (2006).
  • 161
    Kayaki Y, Yamamoto M and Ikariya T, Stereoselective formation of α-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide. J Org Chem 72:647649 (2007).
  • 162
    Yanlong G, Feng S and Youquan D, Ionic liquid as an efficient promoting medium for fixation of CO2: clean synthesis of r-methylene cyclic carbonates from CO2 and propargyl alcohols catalyzed by metal salts under mild conditions. J Org Chem 69:391394 (2004).
  • 163
    Della Ca' N, Gabriele B, Ruffolo G, Veltri L, Zanetta T and Costa M, Effective guanidine-catalyzed synthesis of carbonate and carbamate derivatives from propargyl alcohols in supercritical carbon dioxide. Adv Syn Catal 353:133146 (2011).
  • 164
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B and Kunimori K, Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem 6:206214 (2004).
  • 165
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B and Kunimori K, Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide. Catal Lett 95:4549 (2004).
  • 166
    Huang SY, Liu SG, Li JP, Zhao N, Wei W and Sun YH, Synthesis of cyclic carbonate from carbon dioxide and diols over metal acetates. J Fuel Chem Tech 35:701705 (2007).
  • 167
    Huang SY, Ma J, Li J, Zhao N, Wie W and Sun Y, Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases. Catal Commun 9:276280 (2008).
  • 168
    Aresta M, Dibenedetto A, Nocito F and Ferragina C, Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J Catal 268:106 (2009).
  • 169
    Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C and Nocito F, Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 67:1308 (2011).
  • 170
    Kolb N and Meier MAR, Monomers and their polymers derived from saturated fatty acid methyl esters and dimethyl carbonate. Green Chem 14:24292435 (2012).
  • 171
    Li Q, Zhu W, Li C, Guan G, Zhang D, Xiao Y and Zheng L, A non-phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: synthesis, characterization, and properties. J Pol Sci A: Pol Chem 51:13871397 (2013).
  • 172
    Mei F, Pei Z and Li G, The transesterification of dimethyl carbonate with phenol over Mg−Al-hydrotalcite Catalyst. Org Proc Res Dev 8:372375 (2004).
  • 173
    Du Z, Kang W, Cheng T, Yao J and Wang G, Novel catalytic systems containing n-BuSn(O)OH for the transesterification of dimethyl carbonate and phenol. J Mol Catal: Chem 246(1–2): 200205 (2006).
  • 174
    Tong DS, Yao J, Wang Y, Niu H Y, Wang G Y, Transesterification of dimethyl carbonate with phenol to diphenyl carbonate over V2O5 catalyst. J Mol Catal A: Chem 268:120126 (2007).
  • 175
    Chen T, Han H, Yao J and Wang G, The transesterification of dimethyl carbonate and phenol catalyzed by 12-molybdophosphoric salts. Cat Comm 8:13611365 (2007).
  • 176
    Su KM, Li ZH, Ding M and Long He X, The synthesis of diphenyl carbonate from dimethyl carbonate and phenol over modified organotin catalysts. Adv Mat Res 233–235:124127 (2011).
  • 177
    Du ZP, Chen SR, Shen C, Zhou B, Huang LM, Wang GY and Wu YX, Effect of copper compounds on the synthesis of diphenyl carbonate from transesterification catalyzed by n-Bu2SnO. Adv Mat Res 396–398:759763 (2011).
  • 178
    Sreekumar K, Mathew T, Mirajkar SP, Sugunan S and Rao BS, A comparative study on aniline alkylation activity using methanol and dimethyl carbonate as the alkylating agents over Zn-Co-Fe ternary spinel systems. Appl Catal A: Gen 201:L1L8 (2000).
  • 179
    Nagaraju N and Kuriakose G, Activity of amorphous V-AlPO4 and Co-AlPO4 in the selective synthesis of N-monoalkylated aniline via alkylation of aniline with methanol or dimethyl carbonate. New J Chem 27:765768 (2003).
  • 180
    Kirumakki SR, Nagaraju N, Chary KVR and Narayanan S, A facile O-alkylation of 2-naphthol over zeolites H beta, HY, and HZSM5 using dimethyl carbonate and methanol. J Catal 221:549559 (2004).
  • 181
    Distaso M and Quaranta E, Group 3 metal (Sc, La) triflates as catalysts for the carbomethoxylation of aliphatic amines with dimethylcarbonate under mild conditions. Tetrahedron 60:15311539 (2004).
  • 182
    Shivarkar AB, Gupte SP and Chaudhari RV, Selective synthesis of N,N-dimethyl aniline derivatives using dimethyl carbonate as a methylating agent and onium salt as a catalyst. J Mol Catal A: Chem 226:4956 (2005).
  • 183
    Su K, Li Z, Cheng B, Liao K, Shen D and Wang Y, Studies on the carboxymethylation and methylation of bisphenol A with dimethyl carbonate over TiO2/SBA-15. J Mol Catal A: Chem 315:6068 (2010).
  • 184
    Li Z, Su K, Cheng B, Ming J, Zhang L and Xu Y, Promotion of organotin modified SBA-15 in the selective carboxylation of BPA with DMC. Catal Commun 12:932935 (2011).
  • 185
    Breuch D and Löwe H, Heterogenously catalyzed one-step alkylation and carboxylation of N-methylimidazole with dimethyl carbonate in continuous flow. Green Process Synth 1:261267 (2012).
  • 186
    Kuriakose G, Nagy JB and Nagaraju N, Structure and catalytic activity correlation of CoAlPO4 in the synthesis of N,N-biphenyl urea via alkylation of aniline using dimethyl carbonate. Cat Comm 6:2935 (2005).
  • 187
    Kirumakki SR, Nagaraju N, Murthy KVVSBSR and Narayanan S, Esterification of salicylic acid over zeolites using dimethyl carbonate. Appl Catal A: Gen 226:175182 (2002).
  • 188
    Vasapollo G, Mele G, Maffei A and Del Sole R, Palladium-catalysed cyclocarbonylation reactions in dimethyl carbonate, an eco-friendly solvent and ring-opening reagent. Appl Organomet Chem 17:835839 (2003).
  • 189
    Luque R, Campelo JM, Conesa TD, Luna D, Marinas JM and Romero AA, Catechol O-methylation with dimethyl carbonate over different acid–base catalysts. New J Chem 30:12281234 (2006).
  • 190
    Anderson SE, Franko J, Anderson KL, Munson AE, Lukomska E and Meade BJ, Immunotoxicity and allergic potential induced by topical application of dimethyl carbonate (DMC) in a murine model. J Immunotoxicol 10:5966 (2013).
  • 191
    Serini V, Ullmann's Enciclopedia of Industrial Chemistry. VCH Publishers, Weinheim, A5-197201 (1992).
  • 192
    Romano U, Tesei R, Massi M and Rebora P, Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds. Ind Eng Chem Prod Res Dev 19:396403 (1980).
  • 193
    Romano U, Dimethyl carbonate and its production technology. Chim Ind (Milan) 75:303–306 (1993).
  • 194
    Nishihira K, Tanaka S, Kodama K and Kaneko T, Process for preparing diester of carbonic acid UBE Industries Ltd. European Patent Application EP 501507 (1992).
  • 195
    Kizlink J, Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of organotin compounds. Collect Czech Chem Commum 58:13991402 (1993).
  • 196
    Fan B, Zhang J, Li R and Fan W, In situ preparation of functional heterogeneous organotin catalyst tethered on SBA-15. Catal Lett 121:297302 (2008).
  • 197
    Ferreira HBP, Vale DL, Mota CJA and Miranda JL, Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of organotin compounds. Collect Czech Chem Commun 58:13991402 (1993).
  • 198
    Kalhor MP, Chermette H and Ballivet-Tkatchenko D, Reactivity of dialkoxydibutylstannanes toward carbon dioxide: a DFT study of electronic and steric effects. Polyhedron 32:7377 (2012).
  • 199
    Dibenedetto A, Pastore C and Aresta M, Direct carboxylation of alcohols to organic carbonates: comparison of the Group 5 element alkoxides catalytic activity: an insight into the reaction mechanism and its key steps. Catal Today 115:8894 (2006).
  • 200
    Aresta M, Dibenedetto A and Pastore C, Synthesis and characterization of Nb(OR)4[OC(O)OR] (R = Me, Et, Allyl) and their reaction with the parent alcohol to afford organic carbonates. Inorg Chem 42:32563261 (2003).
  • 201
    Fujita S-I, Bhanage BM, Ikushima Y and Arai M, Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green Chem 3:8791 (2001).
  • 202
    Fang S and Fujimoto K, Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Appl Catal A 142:L1L3 (1996).
  • 203
    Kizlink J and Pastucha I, Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(IV) and Ti(IV) alkoxides and metal acetates. Collect Czech Chem Commun 60:687692 (1995).
  • 204
    Aresta M, Dibenedetto A, Pastore C, Pàpai I and Schubert G, Reaction mechanism of the direct carboxylation of methanol to dimethylcarbonate: experimental and theoretical studies. Topics Catal 40:7181 (2006).
  • 205
    Choi J C, He LN and Sakakura T, Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chem 4:230234 (2002).
  • 206
    Aresta M, Dibenedetto A, Nocito F, Angelini A and Gabriele B, Synthesis and characterization of a novel polystyrene-tethered niobium methoxo species. Its application in the CO2-based carboxylation of methanol to afford dimethyl carbonate. Appl Catal A: Gen 387:113118 (2010).
  • 207
    Kohno K, Choi JC, Ohshima Y, Yasuda H and Sakakura T, Synthesis of dimethyl carbonate from carbon dioxide catalyzed by titanium alkoxides with polyether-type ligands. ChemSusChem 1:186188 (2008).
  • 208
    Ikeda Y, Asadullah M, Fujimoto K and Tomishige K, Structure of the active sites on H3PO4/ZrO2 Catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide. J Phys Chem B 105:1065310658 (2001).
  • 209
    Ikeda Y, Sakaihori T, Tomishige K and Fujimoto K, Promoting effect of phosphoric acid on zirconia catalysts in selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 66:5962 (2000).
  • 210
    Kumar N, Leino E, Mäki-Arvela P, Aho A, Käldström M, Tuominen M, Laukkanen P, Eränen K, Mikkola JP, Salmi T and Yu MD, Synthesis and characterization of solid base mesoporous and microporous catalysts: influence of the support, structure and type of base metal. Materials 152:7177 (2012).
  • 211
    Tomishige K, Sakaihori T, Ikeda Y and Fujimoto K, A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett 58:225229 (1999).
  • 212
    Tomishige K, Ikeda Y, Sakaihori T and Fujimoto K, Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192:355362 (2000).
  • 213
    Aresta M, Dibenedetto A, Pastore C, Cuocci C, Aresta B, Cometa S and Giglio ED, Cerium(IV)oxide modification by inclusion of a hetero-atom: a strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal Today 137:125131 (2008).
  • 214
    Yoshida Y, Arai Y, Kado S, Kunimori K and Tomishige K, Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95101 (2006).
  • 215
    Zhong SH, Kong LL, Li HS and Xiao XF, Preparation of Ti2(OMe)4/SiO2 catalyst and it's reactivity for DMC synthesis from CO2 and CH3OH. Ranliao Huaxue Xuebao 30:454458 (2002)
  • 216
    Tomishige K, Furusawa Y, Ikeda Y, Asadullah M and Fujimoto K, CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 76:7174 (2001).
  • 217
    Tomishige K and Kunimori K, Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl Catal A: Gen 237:103109 (2002).
  • 218
    Jiang C, Guo Y, Wang C, Hu C, Wu Y and Wang E, Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl Catal A: Gen 256:203212 (2003).
  • 219
    Allaoui LA and Acuissi A, Effect of the Brønsted acidity on the behavior of CO2 methanol reaction. J Mol Catal A: Chem 259:281285 (2006).
  • 220
    Dibenedetto A, Aresta M, Angelini A, Ethiraj J and Aresta BM, Synthesis, characterization, and use of NbV/CeIV-Mixed Oxides in the direct carboxylation of ethanol by using pervaporation membranes for water removal. Chem - A Eur J 18:1032410334 (2012).
  • 221
    Hofmann HJ, Brandner A and Claus P, CO2-folgechemie: direktsynthese von dimethylcarbonat durch carboxylierung von methanol an cer-basierten mischoxiden. Chem Ing Tech 83:17111719 (2011).
  • 222
    Wang XJ, Xiao M, Wang SJ, Lu YX and Meng YZ, Direct synthesis of dimethyl carbonate from carbon dioxide and methanol using supported copper (Ni, V, O) catalyst with photo-assistance. J Mol Catal A: Chem 278:9296 (2007).
  • 223
    Bian J, Xiao M, Wang S-J, Lu Y-X and Meng Y-Z. Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:71887196 (2009).
  • 224
    Honda M, Suzuki A, Noorjahan B, Fujimoto K-I, Suzuki K and Tomishige K, Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chem Commun 45964598 (2009).
  • 225
    Honda M, Kuno S, Begum N, Fujimoto K, Suzuki K, Nakagawa Y and Tomishige K, Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Appl Catal A: Gen 384:165170 (2010).
  • 226
    Honda M, Kuno S, Sonehara S, Fujimoto K-I, Suzuki K, Nakagawa Y and Tomishige K, Tandem carboxylation-hydration reaction system from methanol, CO2and benzonitrile to dimethyl carbonate and benzamide catalyzed by CeO2. ChemCatChem 3:365370 (2011).
  • 227
    Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Fujimoto K-I and Tomishige K, Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine ChemSusChem 6:13411344 (2013).
  • 228
    Aresta M, Dibenedetto A, Fracchiolla E, Giannoccaro P, Pastore C, Pápai I and Schubert G, Mechanism of formation of oganic carbonates from aliphatic alcohols and carbon dioxide under mild conditions promoted by carbodiimides. DFT calculation and experimental study. J Org Chem 70:61776186 (2005).
  • 229
    Aresta M, Dibenedetto A, Stufano P, Aresta BM, Maggi S, Papai I, Rokob TA and Gabriele B, The solid state structure and reactivity of NbCl5·(N,N′-dicyclohexylurea) in solution: evidence for co-ordinated urea dehydration to the relevant carbodiimide. Dalton Trans 39:69856992 (2010).
  • 230
    Aresta M, Dibenedetto A and Stufano P, Process for the preparation of symmetric carbo-dimides trough dehydration of relevant urea. IP MI 2009A001221 (2009).
  • 231
    Quaranta E and Aresta M, The chemistry of N-CO2 bonds. Synthesis of carbamic acids and their derivatives, isocyanates and ureas. In CO2 as Chemical Feedstock, ed by Aresta M. Wiley-VCH, Weinheim (2010).
  • 232
    Carbon Dioxide Recovery and Utilisation, ed by Aresta M. Kluwer Academic, Dordrecht (2003).
  • 233
    Vaidya PD and Kenig EY, CO2-alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol 30:14671474 (2007).
  • 234
    Aresta M, Quaranta E, Berloco C, Fragale C and Tommasi I, Transition metal peroxocarbonates: carboxylation agents under oxidative conditions. Proceedings of Internetional Conference on Carbon Dioxide Utilization, Bari, Italy, 363 (1993).
  • 235
    Belli Dell'Amico D, Calderazzo F, Labella F, Marchetti F and Pampaloni G, Converting carbon dioxide into carbamato derivatives. Chem Rev 103:38573898 (2003).
  • 236
    Terlouw JK and Schwarz H, The generation and characterization of molecules by neutralization-reionization mass spectrometry (NRMS). New analytical methods. Angew Chem Int Ed Eng 26:805815 (1987).
  • 237
    Kaminskaia NV and Kostic NM, Kinetics and mechanism of urea hydrolysis catalyzed by Palladium(II) complexes. Inorg Chem 36:59175926 (1997).
  • 238
    Aresta M, Ballivet-Tkatchenko D, Belli Dell'Amico D, Bonnet MC, Boschi D, Calderazzo F, Faure R, Labella L and Marchetti F, Isolation and structural determination of two derivatives of the elusive carbamic acid. Chem Commun 1099–1100 (2000).
  • 239
    Jamroz MH, Dobrowolski JCz, Rode JE and Borowiak M, Comparison of calculated structural parameters and infrared spectra with experimental data for dimeric dibenzyl carbamic acid. J Mol Struct 618:101108 (2002).
  • 240
    Dibenedetto A, Aresta M, Fragale C and Narracci M, Reaction of silylalkylmono- and silylalkyldi-amines with carbon dioxide: evidence of formation of inter- and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis. Green Chem 4:439443 (2002).
  • 241
    Shim YN, Lee JK, Im JK, Mukherjee DK, Nguyen DQ, Cheong M and Kim HS, Ionic liquid-assisted carboxylation of amines by CO2: a mechanistic consideration. Phys Chem Chem Phys 13:61976204 (2011).
  • 242
    Kovvali AS and Sirkar KK, Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:25022511 (2001).
  • 243
    Nagai D, Suzuki A and Kuribayashi T, Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible CO2 absorbent. Macromol Rapid Commun 32:404410 (2011).
  • 244
    Tiritiris I, Mezger J, Stoyanov EV and Kantlehner W, Orthoamides and iminium salts, capturing of carbon dioxide with organic bases (Part 2) - reactions of guanidines and ω-Aminoalkyl-guanidines with carbon dioxide. Zeitschrift fur Naturforschung B - J Chem Sci 66:164168 (2011).
  • 245
    Xie HB, Johnson JK, Perry RJ, Genovese S and Wood BR, A computational study of the heats of reaction of substituted monoethanolamine with CO2. J Phys Chem A 115:342350 (2011).
  • 246
    Carretti E, Dei L, Baglioni P and Weiss RG, Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J Am Chem Soc 125:51215129 (2003).
  • 247
    Stastny V, Anderson A and Rudkevivh DM, Supramolecular structures from lysine peptides and carbon dioxide. J Org Chem 71:86968705 (2006).
  • 248
    Mindrup EM and Schneider WF, Computational comparison of the reactions of substituted amines with CO2. ChemSusChem 3:931938 (2010).
  • 249
    Phan L, Andreatta JR, Horvey LK, Edie CF, Luco AL, Mirchandani A, Darensbourg DJ and Jessop PJ, Switchable-polarity solvents prepared with a single liquid component. J Org Chem 73:127132 (2008).
  • 250
    Adams P and Baron FA, Esters of carbamic acid. Chem Rev 65:567602 (1965).
  • 251
    Rossi L, Product class 6: acyclic and cyclic carbamic acid and esters, and their sulfur, selenium, tellurium, and phosphorous analogues. Sci Synth 18:461648 (2005).
  • 252
    Aresta M, Quaranta E and Dibenedetto A, Reaction of alkali tetraphenylborates with amines in the presence of CO2: a new easy way to alkali carbamates (both aliphatic and aromatic) and anhydrous alkylammonium tetraphenylborates. Proceedings of 3rd Internetional Conference on Carbon Dioxide Utilization, Norman, Oklahoma (USA) (1995).
  • 253
    Tsuda T, Washida H, Watanabe K, Miva M and Saegusa T, Preparation of urethanes from carbon dioxide via a copper(I) carbamato-complex. J Chem Soc Chem Commun 815816 (1978).
  • 254
    Yoshida Y, Ishii S, Watanabe M and Yamashita T, Novel synthesis of carbamate ester from carbon dioxide, amines, and alkyl halides. Bull Chem Soc Jpn 62:15341538 (1989).
  • 255
    Aresta M and Quaranta E, Role of the macrocyclic polyether in the synthesis of N-alkylcarbamate esters from primary amines, CO2 and alkyl halides in the presence of crown-ethers. Tetrahedron 21:15151530 (1992).
  • 256
    Aresta M and Quaranta E, Alkali-metal-assisted Transfer of carbamate group from phosphocarbamates to alkyl halides: a new easy way to alkali-metal carbamates and to carbamate esters. J Chem Soc Dalton Trans 1893 (1992).
  • 257
    McGhee WD, Riley D, Kevin C, Pan Y and Parnas B, Carbon dioxide as a phosgene replacement: synthesis and mechanistic studies of urethanes from amines, CO2, and alkyl chlorides. J Org Chem 60:28202830 (1995).
  • 258
    Shi M and Shen YM, The reaction of amines with benzyl halides under CO2 atmosphere. Helv Chim Acta 84:33573365 (2001).
  • 259
    McGhee WD and Talley JJ, Preparation of urethane and carbonate products. US 5302717 (1994).
  • 260
    Singh KN, Mild and convenient synthesis of organic carbamates from amines and carbon dioxide using tetraethylammonium superoxide. Synth Commun 37:26512654 (2007).
  • 261
    Chaturvedi D, Mishra N and Mishra V, An efficient and novel synthesis of carbamate esters from the coupling of amines, halides and carbon dioxide in the presence of basic resin. Chinese Chem Lett 17:13091312 (2006).
  • 262
    Chaturvedi D and Ray S, Triton-B catalyzed, efficient, one-pot synthesis of carbamate esters from alcoholic tosylates. Monatsh Chem 137:459463 (2006).
  • 263
    Chaturvedi D, Kumar A and Ray S, An efficient one pot synthesis of carbamate esters through alcoholic tosylates. Synth Commun 32:26512655 (2002).
  • 264
    Srivastava R, Srinivas D and Ratnasamy P, Zeolite-based organic–inorganic hybrid catalysts for phosgene-free and solvent-free synthesis of cyclic carbonates and carbamates at mild conditions utilizing CO2. Appl Catal A Gen 289:128134 (2005).
  • 265
    Srivastava R, Srinivas D and Ratnasamy P, Syntheses of polycarbonate and polyurethane precursors utilizing CO2 over highly efficient, solid as-synthesized MCM-41 catalyst. Tetrahedron Lett 47:42134217 (2006).
  • 266
    Srivastava R, Srinivas D and Ratnasamy P, CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. J Catal 233:115 (2005).
  • 267
    Juárez R, Concepción P, Corma A and García H, Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by ω-aminoalcohols. Chem Commun 46:41814183 (2010).
  • 268
    Tamura M, Honda M, Noro K, Nakagawa Y and Tomishige K, Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent. J Catal 305:191192 (2013).
  • 269
    Honda M, Sonehara S, Yasuda H, Nakagawa Y and Tomishige K, Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chem 13:34063413 (2011).
  • 270
    Primo A, Aguado E and Garcia H, CO2-fixation on aliphatic α,ω-diamines to form cyclic ureas, catalyzed by ceria nanoparticles that were obtained by templating with alginate. ChemCatChem 5:10201023 (2013).
  • 271
    Tamura M, Noro K, Honda M, Nakagawa Y and Tomishige K, Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chem 15:15671577 (2013).
  • 272
    Huang K, Sun CL and Shi ZJ, Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem Soc Rev 40:24352452 (2011).
  • 273
    Albano P, Aresta M and Manassero M, Interaction of carbon dioxide with coordinatively unsaturated rhodium(I) complexes with the ligand 1,2-bis(diphenylphosphino)ethane. Inorg Chem 19:10691072 (1980).
  • 274
    Aresta M, Tommasi I, Dileo C, Dibenedetto A, Narracci M, Ziolkowski J and Jezierski A, Synthesis and spectroscopic (1H NMR, ESR) characterization of new aryloxy-Mn(II) complexes: steric control over O- vs. phenyl-π-coordination of ArO-ligands (ArO-=C6H5O-, 4-methyl-C6H4O-, 3,5-dimethyl-C6H3O-, 2,6-di-tert-butyl-C6H3O-, 2,6-dimethyl-C6H3O-) to the “Mn(II)Cp” moiety, and their reactivity with carbon dioxide. Can J Chem 79:570577 (2001).
  • 275
    Handbook of C–H Transformations. Applications in Organic Synthesis, ed by Dyker G. Wiley-VCH, Weinheim, (2005).
  • 276
    Jones W and Fehe F, Comparative reactivities of hydrocarbon carbon-hydrogen bonds with a transition-metal complex. Acc Chem Res 22:91100 (1989).
  • 277
    Godula K and Sames D, C-H bond functionalization in complex organic synthesis. Science 312:6772 (2006).
  • 278
    Bergman RG, C–H activation. Nature 446:391506 (2007).
  • 279
    Beccalli EM, Broggini G, Martinelli M and Sottocornola S, C-C, C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem Rev 107:53185365 (2007).
  • 280
    Chin CS, Won G, Chong D, Kim M and Lee H, Carbon−carbon bond formation involving reactions of alkynes with group 9 metals (Ir, Rh, Co): preparation of conjugated olefins. Acc Chem Res 35:218225 (2002).
  • 281
    Conejero S, Paneque M, Poveda ML, Santos LL and Carmona E, C−H bond activation reactions of ethers that generate Iridium carbenes. Acc Chem Res 43:572580 (2010).
  • 282
    Fagnou K and Lautens M, Rhodium-catalyzed carbon-carbon bond forming reactions of organometallic compounds. Chem Rev 103:169196 (2003).
  • 283
    Chianese AR, Lee SJ and Gagnè MR, Electrophilic activation of alkenes by Platinum(II): so much more than a slow version of palladium(II). Angew Chem Int Ed 46:40424059 (2007).
  • 284
    Furstner A and Davies PW, Catalytic carbophilic activation: catalysis by Platinum and Gold π acids. Angew Chem Int Ed 46:34103449 (2007).
  • 285
    Albrecht M and Van Koten G, Platinum group organometallics based on “Pincer” complexes: sensors, switches, and catalysts. Angew Chem Int Ed 40:37503781 (2001).
  • 286
    Li Z, Brouwer C and He C, Gold-catalyzed organic transformations. Chem Rev 108:32393265 (2008).
  • 287
    Jimènez Nùnez E and Echavarren AM, Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. Chem Rev 108:33263350 (2008).
  • 288
    Taniguchi Y, Hayashida T, Shibasaki H, Piao D, Kitamura T, Yamaji T and Fujiwara Y, Highly efficient Vanadium-catalyzed transformation of CH4 and CO to acetic acid. Org Lett 1:557560 (1999).
  • 289
    Zerella M, Mukhopadhyay S and Bell AT, Synthesis of mixed acid anhydrides from methane and carbon dioxide in acid solvents. Org Lett 5:31933196 (2003).
  • 290
    Fujiwara Y, Taniguch Y, Takaki K, Kurioka M, Jintokuc T and Kitamura T, Palladium-catalyzed acetic acid synthesis from methane and carbon dioxide. Stud Surf Sci Catal 107:275278 (1997).
  • 291
    Pápai I, Schubert G, Mayer I, Besenyei G and Aresta M, Mechanistic details of Nickel(0)-assisted oxidative coupling of CO2 with C2H4. Organometallics 23:52525259 (2004).
  • 292
    Alvarez R, Carmona E, Cole-Hamilton DJ, Galindo A, Gutierrez-Puebla E, Monge A, Poveda MI and Ruiz C, Formation of acrylic acid derivatives from the reaction of carbon dioxide with ethylene complexes of molybdenum and tungsten. J Am Chem Soc 107:55295531 (1985).
  • 293
    Fischer R, Langer J, Malassa A, Walther D, Goerls H and Vaugham G, A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex. Chem Commun 25102512 (2006).
  • 294
    Aresta M, Pastore C, Giannoccaro P, Kovàcs G, Dibenedetto A and Pàpai I, Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethene or propene with a carboxylic moiety or CO2. Chem Eur J 13:90289034 (2007).
  • 295
    Del Moral D, Osuna AMB, Cordoba A, Moreto JM, Veciana J, Ricart S and Ventosa N, Versatile chemoselectivity in Ni-catalyzed multiple bond carbonylationsand cyclocarbonylations in CO2-expanded liquids. Chem Commun 47234725 (2009).
  • 296
    Musco A, Perego C and Tartari V, Telomerization reactions of butadiene and CO2 catalyzed by phosphine Pd (0) complexes:(E)-2-ethylidenehept-6-en-5-olide and octadienyl esters of 2-ethylidenehepta-4, 6-dienoic acid. Inorg Chim Acta 28:L147L148 (1978).
  • 297
    Doehring A and Jolly PW, The palladium catalyzed reaction of carbon dioxide with allene. Tetrahedron Lett 21:30213024 (1980).
  • 298
    Albano P and Aresta M, Some catalytic properties of Rh(diphos)(η-BPh4). J Organomet Chem 190:243246 (1980).
  • 299
    Braunstein P, Matt D and Nobel D, Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and carbon dioxide. J Am Chem Soc 110:32073212 (1988).
  • 300
    Braunstein P, Matt D and Nobel D, Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chem Rev 88:747764 (1988).
  • 301
    Musco A, Co-oligomerization of butadiene and carbon dioxide catalysed by tertiary phosphine–palladium complexes. J Chem Soc Perk Trans 1:693698 (1980).
  • 302
    Behr A and Juszak KD, Palladium-catalyzed reaction of butadiene and carbon dioxide. J Organomet Chem 255:263268 (1983).
  • 303
    Daniels JA, Telomerization of butadiene and carbon dioxide. ICI PLC, EP 0050445 (1982).
  • 304
    Leitner W and Dinjus E, New insights into the palladium-catalysed synthesis of δ-lactones from 1,3-dienes and carbon dioxide. Appl Organomet Chem 9:4345 (1995).
  • 305
    Behr A and Heite M, Telomerization of carbon dioxide and 1,3-butadiene: process development in a miniplant. Chem Eng Technol 23:952955 (2000).
  • 306
    Behr A and Heite M, Telomerisation von Kohlendioxid und 1,3-Butadien: Verfahrensentwicklung via Miniplant-Technik. Chem Ing Tech 72:5861 (2000).
  • 307
    Buchmuller K, Dahmen N, Dinjus E, Neumann D, Powietzka B, Pitter S and Schon J, Control of homogeneously catalyzed reactions by phase equilibria. Green Chem 5:218223 (2003).
  • 308
    Storzer U, Walter O, Zevaco T and Dinjus E, (Cyclohexylmethylphenylphosphine)[(1-η1:6 − 8-η3)-octa- 2,6-diene-1,8-diyl]palladium(II) as a model for key intermediates in enantioselective reactions of 1,3-butadiene catalyzed by palladium(0). Organometallics 24:514520 (2005).
  • 309
    Haack V, Dinjus E and Pitter S, Synthesis of polymers with an intact lactone ring structure in the main chain. Angew Makromol Chem 257:1922 (1998).
  • 310
    Behr A and Brehme VA, Homogeneous and heterogeneous catalyzed three-step synthesis of 2-ethylheptanoic acid from carbon dioxide, butadiene and hydrogen. J Mol Catal A: Chem 187:6980 (2002).
  • 311
    Behr A and Brehme VA, Bimetallic-catalyzed reduction of carboxylic acids and lactones to alcohols and diols. Adv Synth Catal 344:525532 (2002).
  • 312
    Behr A, Henze G, Johnen L and Reyer S, Selective catalytic formation of unsaturated amino acids from petrochemicals and carbon dioxide - application of high-throughput catalyst screening. J Mol Catal A: Chem 287:95101 (2008).
  • 313
    Behr A and Becker M, The telomerisation of 1,3-butadiene and carbon dioxide: process development and optimisation in a continuous miniplant. Dalton Trans 46074613 (2006).
  • 314
    Behr A, Bahke P, Klinger B and Becker M, Application of carbonate solvents in the telomerisation of butadiene with carbon dioxide. J Mol Cat A: Chem 267:149156 (2007).
  • 315
    Holzhey N, Pitter S and Dinjus E, Catalyst obtained from Phospinoalkyl-functionalized polystyrene and method for the production of δ-lactone. Patent Application WO 9857745, to Forschungszentrum Karlsruhe GmbH, Germany, (1998).
  • 316
    Zevaco T and Dinjus E, Main Group elements- and transition metal-promoted carboxylation of organic substrates (alkanes, alkenes, alkynes, aromatics and others). In CO2 as Chemical Feedstock, ed by Aresta M. Wiley-VCH, Weinheim (2010).
  • 317
    Aresta M, Dibenedetto A, Pàpai I and Schubert G, Unprecedented formal ‘2 + 2’ addition of allene to CO2 promoted by [RhCl(C2H4)(PiPr3)]2: direct synthesis of the four membered lactone α-methylene-β-oxiethanone. The intermediacy of [RhH2Cl(PiPr3)]2: theoretical aspects and experiments. Inorg Chim Acta 334:294300 (2002).
  • 318
    Inoue Y, Itoh Y and Hashimoto H, Incorporation of carbon dioxide in alkyne oligomerization catalyzed by nickel (0) complexes. Formation of substituted 2-pyrones. Chem Lett 855856 (1977).
  • 319
    Burkhart G and Hoberg H, Oxanickelacyclopentene derivatives from Nickel(0), carbon dioxide, and alkynes. Angew Chem Int Ed Eng 21:76 (1982).
  • 320
    Hoberg H, Schaefer D, Burkhart G, Kruger C and Romao MJ, Nickel(0)-induzierte C-C-verknüpfung zwischen kohlendioxid und alkinen sowie alkenen. J Organomet Chem 266:203224 (1984).
  • 321
    Dingyi Y and Yungen Z, The direct carboxylation of terminal alkynes with carbon dioxide. Green Chem 13:12751279 (2011).
  • 322
    Goossen LJ, Rodriguez N, Mamnjolinho F and Lange PP, Synthesis of propiolic acids via copper-catalyzed insertion of carbon dioxide into the C-H bond of terminal alkynes. Adv Synth Catal 352:29132917 (2010).
  • 323
    Goossen LJ, Rodriguez N, Mamnjolinho F and Lange PP, Synthesis of propiolic acids via copper-catalyzed insertion of carbon dioxide into the C–H bond of terminal alkynes. ChemInform 42: DOI: 10.1002/chin.201114057 (2011)..