SEARCH

SEARCH BY CITATION

References

  • Beckenbach, E. F. (Ed.). (2013). Modern mathematics for the engineer: Second Series. Mineola, NY: Dover Publications (Original work published in 1961).
  • Besterfield-Sacre, M. E., Self, B. P., Shuman, L. J., Christ, J. A., Miller, R. L., & Moore, T. J. (2012). Models and modeling in upper division classrooms: Impacting conceptual understanding and the professional skills. Proceedings of the ASEE Annual Conference & Exposition, San Antonio, TX.
  • Cardella, M. (2007). What your engineering students might be learning from their mathematics pre-reqs (beyond integrals and derivatives). Proceedings of the ASEE/IEEE Frontiers in Education Conference. Milwaukee, WI. doi: 10.1109/FIE.2007.4418130
  • Cartier, J., Rudolph, J., & Stewart, J. (2001). The nature and structure of scientific models. National Center for Improving Student Learning and Achievement in Mathematics and Science. University of Wisconsin-Madison. Retrieved from http://ncisla.wceruw.org/publications/reports/Models.pdf
  • Cole, J., Linsenmeier, R., McKenna, A., & Glucksberg, M. (2010). Investigating engineering students' mathematical modeling abilities in capstone design. Proceedings of the ASEE Annual Conference & Exposition, Louisville, KY.
  • Cole, J., Linsenmeier, R., Molina, E., Glucksberg, M., & McKenna, A. (2011). Assessing engineering students' mathematical modeling abilities in capstone design. Proceedings of the ASEE Annual Conference & Exposition, Vancouver, BC, Canada.
  • Diefes-Dux, H., Follman, D., Imbrie, P. K., Zawojewski, J., Capobianco, B., & Hjalmarson, M. (2004). Model eliciting activities: An in-class approach to improving interest and persistence of women in engineering. Proceedings of the ASEE Annual Conference & Exposition, Salt Lake City, UT.
  • Deifes-Dux, H. A., Moore, T., Zawojewski, J., Imbrie, P. K., & Follman, D. (2004). A framework for posing open-ended engineering problems: Model-eliciting activities. Proceedings of the ASEE/IEEE Frontiers in Education Conference, Savannah, GA. doi: 10.1109/FIE.2004.1408556
  • Diefes-Dux, H. A., Zawojewski, J. S., & Hjalmarson, M. A. (2010). Using educational research in the design of evaluation tools for open-ended problems. International Journal of Engineering Education, 26(4), 807819.
  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103120. doi: 10.1002/j.2168–9830.2005.tb00832.x
  • Gainsburg, J. (2006). The mathematical modeling of structural engineers. Mathematical Thinking and Learning, 8, 336. doi: 10.1207/s15327833mtl0801_2
  • Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: Aldine.
  • Goold, E., & Devitt, F. (2012). The role of mathematics in engineering practice and in the formation of engineers. Proceedings of the Annual Conference of the European Society for Engineering Education (SEFI), Thessaloniki, Greece.
  • Hatano, G., & Inagaki, K. (1986). Two courses of expertise. In H. Stevenson, H. Azuma, & K. Hakuta (Eds.), Child development and education in Japan (pp. 262272). New York, NY: Freeman.
  • Hatano, G., & Oura, Y. (2003). Commentary: Reconceptualizing school learning using insight from expertise research. Educational Researcher, 32(8), 2629.
  • Hesse, M. (1963). Models and analogies in science. London: Sheed and Ward.
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 333). Mahwah, NJ: Lawrence Erlbaum.
  • Litzinger, T. A., Lattuca, L. R., Hadgraft, R. G., & Newstetter, W. C. (2011). Engineering education and the development of expertise. Journal of Engineering Education, 100(1), 123150. doi: 10.1002/j.2168–9830.2011.tb00006.x
  • Magnani, L., Nersessian, N. J., & Thagard, P. (Eds.). (1999). Model-based reasoning in scientific discovery. New York, NY: Kluwer/Plenum.
  • Maki, D., & Thompson, M. (2006). Mathematical modeling and computer simulation. Belmont, CA: Thomson Brooks/Cole.
  • McKenna, A. (in press). Adaptive expertise and knowledge fluency in design and innovation. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research. Cambridge University Press.
  • McKenna, A., Linsenmeier, R., & Glucksberg, M. (2008). Characterizing computational adaptive expertise. Proceedings of the ASEE Annual Conference & Exposition, Pittsburgh, PA.
  • McKenna, A. F., & Carberry, A. R. (2012). Characterizing the role of modeling in innovation. International Journal of Engineering Education, 28, 263269.
  • Miles, M., & Huberman, M. (1984). Qualitative data analysis: A source book for new methods. Thousand Oaks, CA: Sage.
  • Moore, T. J. (2008). Model-eliciting activities: A case-based approach for getting students interested in material science and engineering. Journal of Materials Education, 30(5–6), 295310.
  • Moore, T., & Diefes-Dux, H. (2004). Developing model-eliciting activities for undergraduate students based on advanced engineering content. Proceedings of the ASEE/IEEE Frontiers in Education Conference, Savannah, GA. doi: 10.1109/FIE.2004.1408557
  • Moore, T. J., & Hjalmarson, M. A. (2010). Developing measures of roughness: Problemsolving as a method to document student thinking in engineering. International Journal of Engineering Education, 26(4), 820830.
  • Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students' conceptual understanding. Journal of Engineering Education, 102(1), 141178. doi: 10.1002/jee.20004
  • Morgan, M. S., & Morrison, M. (Eds.). (1999). Models as mediators Cambridge, UK: Cambridge University Press.
  • Nersessian, N. J., & Patton, C. (2009). Model-based reasoning in interdisciplinary engineering. In A. Meijers (Ed.), Handbook of the philosophy of technology and engineering sciences (pp. 687718). Amsterdam, the Netherlands: Elsevier.
  • Newstetter, W. C. (2005). Designing cognitive apprenticeships for biomedical engineering. Journal of Engineering Education, 94(2), 207213. doi: 10.1002/j.2168–9830.2005.tb00841.x
  • Perkins, D. N. (1986). Knowledge as design. Hillsdale, NJ: Lawrence Erlbaum.
  • Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. Mestre (Ed.), Transfer of learning: Research and perspectives (pp. 151). Greenwich, CT: Information Age Publishing.
  • Sheppard, S. D., Macatangay, K., Colby, A., & Sullivan, W. M. (2008). Educating engineers: Designing for the future of the field. San Francisco, CA: Jossey-Bass.
  • Starfield, A. M., Smith, K. A., & Bleloch, A. L. (1994). How to model it: Problem solving for the computer age. Edina, MN: Burgess Publishing.
  • Sun, Y., Newstetter, W., & Nersessian, N. J. (2006). Promoting model-based reasoning in problem-based learning. Trabajo presentado en la reunión anual de la Cognitive Science Society, Vancouver, BC, Canada.
  • Winkelman, P. (2009). Perceptions of mathematics in engineering. European Journal of Engineering Education, 34(4), 305316. doi: 10.1080/03043790902987378
  • Yildirim, T. P., Shuman, L., & Besterfield-Sacre, M. (2010). Model-eliciting activities: Assessing engineering student problem solving and skill integration processes. International Journal of Engineering Education, 26, 831845.
  • Zawojewski, J. S., Hjalmarson, J. S., Bowman, K., & Lesh, R. (2008). A modeling perspective on learning and teaching in engineering education. In J. Zawojewski, H. Diefes-Dux, & K. Bowman (Eds.), Models and modeling in engineering education: Designing experiences for all students. Rotterdam, the Netherlands: Sense.