Membrane traffic in myelinating oligodendrocytes

Authors


Abstract

In the central nervous system (CNS), the myelin sheath is synthesised by oligodendrocytes as a specialised subdomain of an extended plasma membrane, reminiscent of the segregated membrane domains of polarised cells. Myelination takes place within a relatively short period of time and oligodendrocytes must have adapted membrane sorting and transport mechanisms to achieve such a high rate of myelin synthesis and to maintain the unique organisation of the myelin membrane. In adult life, maintenance of the functional myelin sheath requires a carefully orchestrated balance of myelin synthesis and turnover. Imbalance in these processes may cause dys- or demyelination and disease. This review summarises what is currently known about myelin protein trafficking and mistrafficking in oligodendrocytes. We also present data demonstrating distinct transport pathways for myelin structural proteins and the expression of SNARE proteins in differentiating oligodendrocytes. Myelinating glial cells may well serve as a model system for studying general aspects of membrane trafficking and organisation of membrane domains. Microsc. Res. Tech. 52:656–671, 2001. © 2001 Wiley-Liss, Inc.

Ancillary