• steroid hormone;
  • estradiol;
  • aromatase;
  • testosterone;
  • sexual dimorphism


Zebra finches have emerged as an outstanding model system for the investigation of the mechanisms regulating brain and behavior. Their song system has proven especially useful, as the function of discrete anatomical regions have been identified, and striking parallels exist between the morphology of these regions and the level of their function in males and females. That is, the structures are substantially more developed in males, who sing, compared to females, who do not. These parallels extend from higher (telencephalic) centers to the brainstem motor nucleus that innervates the muscles of the vocal organ. Other dimorphic aspects of reproduction in the zebra finch, such as copulatory behaviors and sexual partner preference, however, are not associated with known sex differences in anatomy. In many species, sex differences in neural and peripheral structures and behavior are regulated by secretions from the gonads, which of course are sexually dimorphic themselves. In birds, sex differences at all of these levels (gonad, brain, and behavior) can be mediated by steroid hormones. However, it is not entirely clear that gonadal secretions normally participate at all of the levels. This paper reviews the evidence relating to the role of gonadal steroids in the sexual differentiation of reproductive behaviors and the central and peripheral structures known to regulate them in zebra finches, with a focus on estradiol, which has been most extensively studied in the masculinization of song system morphology and function. Microsc. Res. Tech. 54:354–363, 2001. © 2001 Wiley-Liss, Inc.