• poly-N-acetyl glucosamine;
  • red blood cell;
  • stomatocytic;
  • morphology;
  • hemostasis


The design of devices for surface (topical) hemostasis has been based on maximizing activation of platelets and accelerating coagulation pathways. The studies reported herein examine another aspect of blood contact with topical hemostasis materials, i.e., surface binding of red blood cells (RBCs) and related alterations in RBC morphology. Whole blood was allowed to contact poly-N-acetyl glucosamine (pGlcNAc) containing materials: pGlcNAc nanofibers with parallel polymer alignment (β-pGlcNAc), chitin, and chitosan. The effect on RBC morphology and function via contact with the artificial surfaces on the cell's morphology was examined with scanning and transmission electron microscopy (TEM). β-pGlcNAc was found to densely bind RBCs and induce a stomatocytic-like morphology. Chitin and chitosan also bound RBCs, but with approximately 10-fold lower levels and with less distinct general morphologies. β-pGlcNAc is thus unique in the nature of its interaction with RBCs. These studies indicate that the differential ability of various materials to bind and alter the morphology of RBCs at the artificial surface interface with blood is an important consideration in the design of devices for surface hemostasis. Microsc. Res. Tech., 2008. © 2008 Wiley-Liss, Inc.