Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging


Correspondence to: Yang Xia, Department of Physics, Oakland University, Rochester, Michigan 48309. E-mail: xia@oakland.edu


This study aimed to synchronize the zonal differentiation of the full-thickness articular cartilage by three micro-imaging techniques, namely microscopic magnetic resonance imaging (µMRI), polarized light microscopy (PLM), and Fourier-transform infrared imaging (FTIRI). Eighteen cartilage-bone blocks from three canine humeral joints were imaged by: (a) µMRI T2 relaxation at 0° and 55° orientations in a 7 T magnetic field, (b) PLM optical retardation and azimuthal angle, and (c) FTIRI amide I and amide II anisotropies at 0° and 90° polarizations relative to the articular surface. In addition, µMRI T1 relaxation was imaged before and after the tissue being immersed in gadolinium (contrast agent) solution, to calculate the proteoglycan concentration. A set of previously established criteria in cartilage imaging was revised. The new criteria could simultaneously correlate the thicknesses of the three consecutive subtissue zones in articular cartilage among these imaging techniques. Microsc. Res. Tech. 76:625–632, 2013. © 2013 Wiley Periodicals, Inc.