Design and constraints of the Drosophila segment polarity module: Robust spatial patterning emerges from intertwined cell state switches

Authors


Abstract

The Drosophila segment polarity genes constitute the last tier in the segmentation cascade; their job is to maintain the boundaries between parasegments and provide positional “read-outs” within each parasegment for the entire developmental history of the animal. These genes constitute a relatively well-defined network with a relatively well-understood patterning task. In a previous publication (von Dassow et al. 2000. Nature 406:188–192) we showed that a computer model predicts the segment polarity network to be a robust boundary-making device. Here we elaborate those findings. First, we explore the constraints among parameters that govern the network model. Second, we test architectural variants of the core network, and show that the network tolerates a wide variety of adjustments in design. Third, we evaluate several topologically identical models that incorporate more or less molecular detail, finding that more-complex models perform noticeably better than simplified ones. Fourth, we discuss two instances in which the failure of the network model to behave in a life-like fashion highlights mechanistic details that need further experimental investigation. We conclude with an explanation of how the segment polarity network can be understood as an interwoven conspiracy of simple dynamical elements, several bistable switches and a homeostat. The robustness with which the network as a whole maintains a spatial regime of stable cell state emerges from generic dynamical properties of these simple elements. J. Exp. Zool. (Mol. Dev. Evol.) 294:179–215, 2002. © 2002 Wiley-Liss, Inc.

Ancillary