The regenerative response of minced cardiac muscle grafts in the adult newt was studied using autoradiography and electron microscopy. One-sixteenth to one-eighth of the newt ventricle was amputated, minced, and returned to the wounded ventricle. At five days after grafting, no reorganization of graft muscle pieces was apparent and there was degeneration of much of the muscle graft. Another, smaller population of 5-day myocytes had euchromatic nuclei and intact sarcolemmae. In 10- and 16-day grafts, continuity between ventricular and graft lumina was established and coalescence of graft pieces was apparent. Ultrastructurally, 10- and 16-day graft myocytes appeared to have fewer myofibrillae and increased amounts of rough endoplasmic reticulum, polyribosomes, Golgi complexes, and dense bodies when compared to uninjured ventricular myocytes. The peak of proliferative activity of graft cells was observed at 16 days. Electron microscopic autoradiography revealed breakdown of myofibrillar structure in labeled myocytes, whereas in myocytes in the later stages of mitosis only scattered myofilaments and no Z bands were present. By 30 days, grafts appeared as an integrated structure composed primarily of cardiac muscle. Myocytes of 30-day grafts were observed in various stages of myofibrillogenesis and contained numerous 10-nm filaments. Seventy-day graft myocytes had numerous well organized myofibrillae and intercellular junctions similar to those seen in uninjured ventricular myocytes.