SEARCH

SEARCH BY CITATION

Abstract

Acipenser schrenckii, the Amur Sturgeon, was a commercially valuable fish species inhabiting the Amur (Heilongjiang) River but populations have rapidly declined in recent years. Dams impede A. schrenckii spawning migration and wild populations were critically endangered. Building fishways helped maintain fish populations but data on swimming performance and behavior was crucial for fishway design. To obtain such data on A. schrenckii, a laboratory study of juvenile A. schrenckii (n = 18, body mass = 32.7 ± 1.2 g, body length = 18.8 ± 0.3 cm) was conducted using a stepped velocity test carried out in a fish respirometer equipped with a high-speed video camera at 20°C. Results indicate: (1) The counter-current swimming capability of A. schrenckii was low with critical swimming speed of 1.96 ± 0.10 BL/sec. (2) When a linear function was fitted to the data, oxygen consumption, as a function of swimming speed, was determined to be MO2 = 337.29 + 128.10U (R2 = 0.971, P < 0.001) and the power value (1.0) of U indicated high swimming efficiency. (3) Excess post-exercise oxygen cost was 48.44 mgO2/kg and indicated excellent fatigue recovery. (4) Cost of transport decreased slowly with increased swimming speed. (5) Increased swimming speed led to increases in the tail beat frequency and stride length. This investigation contributed to the basic science of fish swimming behavior and provided data required for the design of fishways. Innovative methods have allowed cultivation of the species in the Yangtze River and, if effective fishways could be incorporated into the design of future hydropower projects on the Amur River, it would contribute to conservation of wild populations of A. schrenckii. The information provided here contributes to the international effort to save this critically endangered species. J. Exp. Zool. 319A:149–155, 2013. © 2013 Wiley Periodicals, Inc.