Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring

Authors


Abstract

Organisms frequently encounter stressful ecological conditions. In vertebrates, a major mechanism of physiological response to stress is mediated by the hypothalamic–pituitary–adrenal axis and results in increased secretion of glucocorticosteroids, which can have adverse consequences on diverse phenotypic traits affecting fitness. Maternal stress may thus have carry-over effects on progeny if it influences pre-natal offspring environment in terms of glucocorticosteroid concentration, although this hypothesis has never been tested in any species under field conditions. We manipulated stress experienced by female barn swallows Hirundo rustica, by exposing them to a predator during laying and measured egg corticosterone concentration. Stressed females laid eggs with greater corticosterone concentration than controls exposed to a herbivore. In another experiment, we injected physiological doses of corticosterone in the egg albumen and compared the phenotype of offspring originating from these eggs with their control siblings originating from either sham-inoculated or unmanipulated eggs and reared in the same nest. Eggs injected with corticosterone had lower hatchability and produced fledglings with smaller body size and slower plumage development than did control eggs. Nestling body size in our study population predicts long-term survival. Thus, maternal stress impaired offspring phenotype and viability by increasing transmission of glucocorticosteroids to the eggs. This study identifies a novel mechanism mediating early maternal effects whereby maternal stress affects offspring quality. These results are relevant to biological conservation because they disclose a mechanism that can link environmental conditions to population productivity and viability. J. Exp. Zool. 303A:998–1006, 2005. © 2005 Wiley-Liss, Inc.

Ancillary