SEARCH

SEARCH BY CITATION

Abstract

The stratigraphically earliest and the most primitive examples of vertebrate skeletal mineralization belong to lineages that are entirely extinct. Therefore, palaeontology offers a singular opportunity to address the patterns and mechanisms of evolution in the vertebrate mineralized skeleton. We test the two leading hypotheses for the emergence of the four skeletal tissue types (bone, dentine, enamel, cartilage) that define the present state of skeletal tissue diversity in vertebrates. Although primitive vertebrate skeletons demonstrate a broad range of tissues that are difficult to classify, the first hypothesis maintains that the four skeletal tissue types emerged early in vertebrate phylogeny and that the full spectrum of vertebrate skeletal tissue diversity is explained by the traditional classification system. The opposing hypothesis suggests that the early evolution of the mineralized vertebrate skeleton was a time of plasticity and that the four tissue types did not emerge until later. On the basis of a considerable, and expanding, palaeontological dataset, we track the stratigraphic and phylogenetic histories of vertebrate skeletal tissues. With a cladistic perspective, we present findings that differ substantially from long-standing models of tissue evolution. Despite a greater diversity of skeletal tissues early in vertebrate phylogeny, our synthesis finds that bone, dentine, enamel and cartilage do appear to account for the full extent of this variation and do appear to be fundamentally distinct from their first inceptions, although why a higher diversity of tissue structural grades exists within these types early in vertebrate phylogeny is a question that remains to be addressed. Citing recent evidence that presents a correlation between duplication events in secretory calcium-binding phosphoproteins (SCPPs) and the structural complexity of mineralized tissues, we suggest that the high diversity of skeletal tissues early in vertebrate phylogeny may result from a low diversity of SCPPs and a corresponding lack of constraints on the mineralization of these tissues. J. Exp. Zool. (Mol. Dev. Evol.) 306B, 2006. © 2006 Wiley-Liss, Inc.