The concept of novelty in evolutionary biology pertains to multiple tiers of biological organization from behavioral and morphological changes to changes at the molecular level. Identifying novel features requires assessments of similarity (homology and homoplasy) of relationships (phylogenetic history) and of shared developmental and genetic pathways or networks. After a brief discussion of how novelty is used in recent literature, we discuss whether the evolutionary approach to homology and homoplasy initially formulated by Lankester in the 19th century informs our understanding of novelty today. We then discuss six examples of morphological features described in the recent literature as novelties, and assess the basis upon which they are regarded as novel. The six are: origin of the turtle shell, transition from fish fins to tetrapod limbs, origination of the neural crest and neural crest cells, cement glands in frogs and casquettes in fish, whale bone-eating tubeworms, and the digestion of plant proteins by nematodes. The article concludes with a discussion of means of acquiring novel genetic information that can account for novelty recognized at higher levels. These are co-options of existing genetic circuitry, gene duplication followed by neofunctionalization, gene rearrangements through mobile genetic elements, and lateral gene transfer. We conclude that on the molecular level only the latter category provides novel genetic information, in that there is no homologous precursor. However, novel phenotypes can be generated through both neofunctionalization and gene rearrangements. Therefore, assigning phenotypic or genotypic “novelty” is contingent on the level of biological organization addressed. J. Exp. Zool. (Mol. Dev. Evol.) 318B:428–437, 2012. © 2011 Wiley Periodicals, Inc.