Tooth replacement without a dental lamina: The search for epithelial stem cells in Polypterus senegalus


  • Conflicts of interest: None


Most actinopterygians replace their teeth continuously throughout life. To address the question of where and how replacement teeth form in actinopterygians, it is advisable to investigate well-chosen representatives within the lineage. The African bichir, Polypterus senegalus, belongs to the earliest diverged group of the actinopterygian lineage with currently living representatives. Its well characterized dentition, together with its phylogenetic position, make this species an attractive model to answer following questions: (1) when and where does the replacement tooth form and how is it connected with the dental organ of the predecessor, and (2) is there any evidence for the presence of epithelial stem cells, hypothesized to play a role in replacement? Serial sections show that one tooth family can contain up to three members, which are all interconnected by dental epithelium. Replacement teeth develop without the presence of a successional dental lamina. We propose that this is the plesiomorphic condition for tooth replacement in actinopterygians. BrdU pulse-chase experiments reveal cells in the outer and middle dental epithelium, proliferating at the time of initiation of a new replacement tooth. It is tempting to assume that these cell layers provide a stem cell niche. The observed absence of label-retaining cells after long chase times (up to 8 weeks) is held against the light of divergent views on cell cycling properties of stem cells. At present, our data do not support, neither reject, the hypothesis on involvement of epithelial stem cells within the process of continuous tooth replacement. J. Exp. Zool. (Mol. Dev. Evol.) 322B: 281–293, 2014. © 2014 Wiley Periodicals, Inc.