Get access

Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors

Authors

  • Ina Gruh,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
    • These authors contributed equally to this work.

  • Stephanie Wunderlich,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
    • These authors contributed equally to this work.

  • Monica Winkler,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Kristin Schwanke,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Jennifer Heinke,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Ulrike Blömer,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Arjang Ruhparwar,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Bettina Rohde,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Ren-Ke Li,

    1. Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
    Search for more papers by this author
  • Axel Haverich,

    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    Search for more papers by this author
  • Ulrich Martin

    Corresponding author
    1. Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
    • Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Podbielskistr. 380, 30659 Hannover, Germany.
    Search for more papers by this author

Abstract

Background

Lentiviral vectors are attractive delivery tools for gene therapy, especially in terminally differentiated target cells. While restriction of gene expression to specific cell populations is of particular importance, highly efficient cell-type-specific gene expression after viral gene transfer so far has been hampered by low levels of transgene expression.

Methods

Addressing this problem, we have integrated the human cytomegalovirus (CMV) immediate-early enhancer into an ‘advanced’ generation lentiviral vector. Expression cassettes with the reporter gene green fluorescent protein (GFP), combined with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) under control of a ubiquitous phosphoglycerate kinase (mouse PGK), cardiomyocyte- (human atrial natriuretic factor (ANF), human ventricular myosin light chain (MLC2v)), or type II alveolar epithelial cell (AT-2)-specific human surfactant protein C (SP-C) promoter, were introduced. As insertion of an enhancing element can interfere with the promoter's specificity, expression levels conferred by our enhancer/promoter constructs were evaluated in target and non-target cells.

Results

Transduction of target cells with human CMV enhancer containing lentiviral vectors resulted in a multiple-log increase in GFP expression compared to corresponding vectors lacking the human CMV enhancer. In the case of the ANF, the MLC2v, and the SP-C promoters, tissue-specific reporter gene expression in cardiomyocytes and in lung AT-2 cells was maintained, as expression in non-target cells increased only up to 7-fold.

Conclusions

The results of this study indicate that lentiviral vectors with the human CMV enhancer conferring efficient cell-type-specific gene expression may be useful tools for gene therapy purposes or cell tracing, e.g. to analyze stem cell differentiation in transplantation and co-culture settings. Copyright © 2007 John Wiley & Sons, Ltd.

Ancillary