Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation

Authors

  • Cécile Faurie,

    1. CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    2. Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    3. Present address: Centre de Référence des Pathologies Plaquettaires—Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
    Search for more papers by this author
  • Matej Rebersek,

    1. University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
    Search for more papers by this author
  • Muriel Golzio,

    1. CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    2. Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    Search for more papers by this author
  • Masa Kanduser,

    1. University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
    Search for more papers by this author
  • Jean-Michel Escoffre,

    1. CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    2. Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    Search for more papers by this author
  • Mojca Pavlin,

    1. University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
    Search for more papers by this author
  • Justin Teissie,

    1. CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    2. Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    Search for more papers by this author
  • Damijan Miklavcic,

    1. University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
    Search for more papers by this author
  • Marie-Pierre Rols

    Corresponding author
    1. CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    2. Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
    • Institut de Pharmacologie et de Biologie Structurale-CNRS UMR 5089, 205 route de Narbonne 31077, Toulouse, France.
    Search for more papers by this author

Abstract

Background

Electroporation is a physical method used to transfer molecules into cells and tissues. Clinical applications have been developed for antitumor drug delivery. Clinical trials of gene electrotransfer are under investigation. However, knowledge about how DNA enters cells is not complete. By contrast to small molecules that have direct access to the cytoplasm, DNA forms a long lived complex with the plasma membrane and is transferred into the cytoplasm with a considerable delay.

Methods

To increase our understanding of the key step of DNA/membrane complex formation, we investigated the dependence of DNA/membrane interaction and gene expression on electric pulse polarity and repetition frequency.

Results

We observed that both are affected by reversing the polarity and by increasing the repetition frequency of pulses. The results obtained in the present study reveal the existence of two classes of DNA/membrane interaction: (i) a metastable DNA/membrane complex from which DNA can leave and return to external medium and (ii) a stable DNA/membrane complex, where DNA cannot be removed, even by applying electric pulses of reversed polarity. Only DNA belonging to the second class leads to effective gene expression.

Conclusions

The life-time of DNA/membrane complex formation is of the order of 1 s and has to be taken into account to improve protocols of electro-mediated gene delivery. Copyright © 2009 John Wiley & Sons, Ltd.

Ancillary