SEARCH

SEARCH BY CITATION

Keywords:

  • Bmi-1;
  • marrow stroma;
  • cardiomyocytes;
  • immortalization;
  • papillomavirus;
  • senescence

Abstract

Background

Cell transplantation has recently been challenged to improve cardiac function of severe heart failure. Human mesenchymal stem cells (hMSCs) are multipotent cells that can be isolated from adult marrow stroma, but because of their limited life span, it is difficult to study them further. To overcome this problem, we attempted to prolong the life span of hMSCs and investigate whether the hMSCs modified with cell-cycle-associated genes can differentiate into cardiomyocytes in vitro.

Methods

We attempted to prolong the life span of hMSCs by infecting retrovirus encoding bmi-1, human papillomavirus E6 and E7, and/or human telomerase reverse transcriptase genes. To determine whether the hMSCs with an extended life span could differentiate into cardiomyocytes, 5-azacytidine-treated hMSCs were co-cultured with fetal cardiomyocytes in vitro.

Result

The established hMSCs proliferated over 150 population doublings. On day 3 of co-cultivation, the hMSCs became elongated, like myotubes, began spontaneously beating, and acquired automaticity. Their rhythm clearly differed from that of the surrounding fetal mouse cardiomyocytes. The number of beating cardiomyocytes increased until 3 weeks. hMSCs clearly exhibited differentiated cardiomyocyte phenotypes in vitro as revealed by immunocytochemistry, RT-PCR, and action potential recording.

Conclusions

The life span of hMSCs was prolonged without interfering with cardiomyogenic differentiation. hMSCs with an extended life span can be used to produce a good experimental model of cardiac cell transplantation and may serve as a highly useful cell source for cardiomyocytic transplantation. Copyright © 2004 John Wiley & Sons, Ltd.