SEARCH

SEARCH BY CITATION

References

  • Advani, S. G., and C. L. Tucker (1987), The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., 31, 751.
  • Altan, M. C., and L. Tang (1993), Orientation tensors in simple flows of dilute suspensions of non-Brownian rigid ellipsoids, comparison of analytical and approximate solutions, Rheol. Acta, 32, 227244.
  • Arbaret L., H. Diot, and J. L. Bouchez (1996), Shape fabrics of particles in low concentration suspensions: Analogue experiments and application to tiling in magma, J. Struct. Geol., 18 (7), 941950.
  • Arbaret, L., A. Fernandez, J. Jezek, B. Ildefonse, P. Launeau, and H. Diot (2000), Analogue and numerical modeling of shape fabrics: Application to strain and flow determination in magmas, Trans. R. Soc. Edinb.: Earth Sci., 90, 97109.
  • Ausias, G., X. J. Fan, and R. I. Tanner (2006), Direct simulation for concentrated fibre suspensions on transient and steady state shear flows, J. Non-Newton. Fluid Mech., 135, 4657.
  • Benn, K. (1994), Overprinting of magnetic fabrics in granites by small strains: Numerical modeling, Tectonophysics, 233, 153162.
  • Blumenfeld, P. (1983), Le " tuilage des mégacristaux," un critère d'écoulement rotationnel pour les fluidités des roches magmatiques: Application au granite de Barbey-Séroux (Vosges, France), Bull. Soc. Geol. Fr., 25, 309318.
  • Blumenfeld, P., and J. L. Bouchez (1988), Shear criteria in granite and migmatite deformed in the magmatic and solid states, J. Struct. Geol., 10, 361372.
  • Borradaile, G. J., and M. Jackson (2004), Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks, in Magnetic Fabric: Methods and Applications, edited by F. Martin-Hernandez, et al., Geological Society London, Special Publication, vol. 238, pp. 299360. Published by The Geological Society, London.
  • Bouchez, J. L. (1997), Granite is never isotropic: An introduction to AMS studies of granitic rocks, in Granite: from Segregation of Melt to Emplacement Fabrics, edited by J. L. Bouchez, pp. 95112, Kluwer Acad., Dordrecht.
  • Bouchez, J. L. (2000), Anistropie de susceptibilité magnétique et fabrique des granites, C.R.Acad. Sci., Terre et Planets, 330, 114.
  • Brenner, H. (1974), Rheology of a dilute suspension of axisymmetric Brownian particles, Int. J. Multiph. Flow, 1, 195341.
  • Bretherton, F. P. (1962), The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech., 14, 284304.
  • Cintra, J. S., and C. L. Tucker (1995), Orthotropic closure approximations for flow-induced fiber orientation, J. Rheol., 39 (6), 10951122.
  • Doi, M., and S. F. Edwards (1978), Dynamics of rod-like macromolecules in concentrated solution. Part 1, J. Chem. Soc. Faraday Trans., II, 74, 560570.
  • Doi, M., and S. F. Edwards (1978), Dynamics of rod-like macromolecules in concentrated solution. Part 2, J. Chem. Soc. Faraday Trans., II, 74, 918932.
  • Einstein, A. (1906), Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 19, 289306.
  • Fernandez, A. (1988), Strain analysis from shape preferred orientation in magmatic flows, Bull. Geol. Inst. Univ. Uppsala, 14, 6167.
  • Fernandez, A., and D. Laporte (1991), Significance of low symmetry fabric in magmatic flows, J. Struct. Geol., 13, 337347.
  • Festa, V., A. Caggianelli, J. H. Kruhl, D. Liotta, G. Prosser, E. Gueguen, and A. Paglionico (2006), Late-Hercynian shearing during crystallization of granitoids at mid-crustal levels (Sila Massif, northern Calabria-Peloritani Terrane, southern Italy). In: Elter, F.M., Dietl, C., Faure, M. (eds), Tectonic Frame of HT Rocks: From Migmatites to Granites, Special Issue of Geodin. Acta, 19/3-4, 185–105.
  • Fisher, N. I., T. Lewis, and B. J. J. Embleton (1987), Statistical Analysis of Spherical Data, Cambridge Univ. Press, Cambridge, 329 pp.
  • Folgar, F. P., and C. L. Tucker (1984), Orientation behavior of fibers in concentrated suspensions, J. Reinf. Plast. Compos., 3, 98119.
  • Gay, N. C. (1968), The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid, Tectonophysics, 5, 8188.
  • Harris, J. B., M. Nawaz, and J. F. T. Pittman (1979), Low-Reynolds-number motion of particles with two or three perpendicular planes of symmetry, J. Fluid Mech., 95 (3), 415429.
  • Housen, B. A., C. Richter, and B. A. van der Pluijm (1993), Composite magnetic anisotropy fabrics: Experiments, numerical models, and implications for the quantification of rock fabrics, Tectonophysics, 220, 112.
  • Hrouda, F. (1982), Magnetic anisotropy of rocks and its application in geology and geophysics, Surv. Geophys., 5, 3782.
  • Hrouda, F., and J. Jezek (1999), Theoretical models for the relationship between magnetic anisotropy and strain: Effect of triaxial magnetic grains, Tectonophysics, 301, 183190.
  • Hrouda, F., S. Taborska, K. Schulmann, J. Jezek, and D. Dolejs (1999), Magnetic fabric and rheology of co-mingled magmas in the Nasavrky Plutonic Complex (E Bohemia): Implications for intrusive strain regime and emplacement mechanism, Tectonophysics, 307, 93111.
  • Ildefonse, B., P. Launeau, J. L. Bouchez, and A. Fernandez (1992), Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional experimental approach, J. Struct. Geol., 14 (1), 7383.
  • Ildefonse, B., L. Arbaret, and H. A. Diot (1997), Rigid particles in simple shear flow: Is their preferred orientation periodic or stable?, in Granite: From Segregation of Melt to Emplacement Fabrics, edited by J. L. Bouchez, pp. 177185, Kluwer Acad., Dordrecht.
  • Jack, D. A., and D. E. Smith (2004), Assessing the use of tensor closure methods with orientation distribution reconstruction functions, J. Compos. Mater., 38, 18511871.
  • Jeffery, G. B. (1922), The motion of ellipsoidal particles immersed in viscous fluid, Proc. R. Soc. London, A 102, 161179.
  • Jelinek, V. (1981), Characterization of magnetic fabric of rocks, Tectonophysics, 79, T63T67.
  • Jezek, J. (1994) Software for modeling the motion of rigid triaxial particles in viscous flow, Comput. Geosci., 20, 409424.
  • Jezek, J., and S. A. Gilder (2006), Competition of magnetic and hydrodynamic forces on ellipsoidal particles under shear: Influence of the Earth's magnetic field on particle alignment in viscous media, J. Geophys. Res., 111, B12S23.
  • Jezek, J., and F. Hrouda (2000), The relationship between the Lisle orientation tensor and the susceptibility tensor, Phys. Chem. Earth., 25, 469474.
  • Jezek, J., and F. Hrouda (2002), Software for modeling the magnetic anisotropy of strained rocks, Comput. Geosci., 28, 10611068.
  • Jezek, J., R. Melka, K. Schulmann, and Z. Venera (1994), The behaviour of rigid triaxial ellipsoidal particles in viscous flows—modeling of fabric evolution in a multiparticle system, Tectonophysics, 229 (3-4), 165180.
  • Jezek, J., K. Schulmann, and K. Segeth (1996), Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows, Tectonophysics, 257, 203221.
  • Jezek, J., S. Saic, K. Segeth, and K. Schulmann (1999), Three-dimensional hydrodynamical modelling of viscous flow around a rotating ellipsoidal inclusion, ellipsoidal inclusion, Comput. Geosci., 25, 547558.
  • Kim, S., and S. J. Karilla (1991), Microhydrodynamics: Principles and Selected Applications. Butterworth–Heinemann, Dover Publications, Inc., Mineola, New York.
  • Kratinova, Z., K. Schulmann, J. B. Edel, J. Jezek, and U. Schaltegger (2007), Model of successive granite sheet emplacement in transtensional setting: Integrated microstructural and anisotropy of magnetic susceptibility study, Tectonics, 26, TC6003.
  • Kratinova, Z., J. Jezek, K. Schulmann, F. Hrouda, R. K. Shail, and O. Lexa (2010), Noncoaxial K-feldspar and AMS subfabrics in the Land's End granite, Cornwall: Evidence of magmatic fabric decoupling during late deformation and matrix crystallization, J. Geophys. Res., 115, B09104.
  • March, A. (1932), Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation, Z. Kristall., 81, 285298.
  • Miller, C. F., D. J. Furbish, B. A. Walker, L. L. Claiborne, G. C. Koteas, H. A. Bleick, and J. S. Miller (2011), Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA, Tectonophysics, 500, 6577.
  • Montgomery-Smith, S., Jack, D. A., and D. E. Smith (2010), A systematic approach to obtaining numerical solutions of Jeffery's type equations using Spherical Harmonics, Compos. Pt. A-Appl. Sci. Manuf., 41, 827835.
  • Mueller, S., E. W. Llewellin, and H. M. Mader (2010), The rheology of suspensions of solid particles, Proc. R. Soc. A, 466, 12011228.
  • Pabst, W., E. Gregorova, and C. Berthold(2006), Particle shape and suspension rheology of short-fiber systems, J. Eur. Ceram. Soc., 26, 149160.
  • Park, Y., and W. D. Means (1996), Direct observation of deformation processes in crystal mushes, J. Struct. Geol., 18, 847858.
  • Paterson, S. R. (2009), Magmatic tubes, troughs, pipes, diapirs, and plumes: Late-stage convective instabilities resulting in compositional diversity and permeable networks in crystal-rich magmas of the Tuolumne Batholith, Sierra Nevada, California, Geosphere, 6, 496527.
  • Paterson, S. R., T. K. Fowler, K. Schmidt, A. Yoshinobu, and S. Yuan (1998), Interpreting magmatic fabric patterns in plutons, Lithos, 44 (1-2), 5382.
  • Petrie, C. J. S. (1999), The rheology of fibre suspensions, J. Non-Newton. Fluid Mech., 87 (2–3), 369402.
  • Phan-Thien, N., X. J. Fan, R. I. Tanner, and R. Zheng (2002), Folgar–Tucker constant for a fibre suspension in a Newtonian fluid, J. Non-Newton. Fluid Mech., 103, 251260.
  • Phelps, J. H., and C. L. Tucker (2009), An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics, J. Non-Newton. Fluid Mech., 156 (3), 165176.
  • Rahnama, M., D. L. Koch, and E. S. G. Shaqfeh (1995), The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear-flow, Phys. Fluids, 7, 487506.
  • Reed, L. J., and E. Tryggvason (1974), Preferred orientations of rigid particles in a viscous matrix deformed by pure shear and simple shear, Tectonophysics, 24, 8598.
  • Rutgers, Ir. R. (1962a), Relative viscosity of suspensions of rigid spheres in Newtonian liquids, Rheol. Acta, 2, 202210.
  • Rutgers, Ir. R. (1962b), Relative viscosity and concentration, Rheol. Acta, 2, 305348.
  • Sanderson, D. J., and A. W. Meneilly (1981), Analysis of three-dimensional strain modified uniform distributions: Andalusite fabrics from a granite aureole, J. Struct. Geol., 3, 109116.
  • Scheidegger, A. E. (1965), On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data. US Geol. Surv. Prof. Paper, 525-C, 164167.
  • Schulmann, K., and J. Jezek (2012), Some remarks on fabric overprints and constrictional AMS fabrics in igneous rocks, Int. J. Earth Sci., 101, 705714.
  • Schulmann, K., J.-B. Edel, P. Hasalova, J. W. Cosgrove, and J. Jezek (2009), Influence of melt induced mechanical anisotropy on AMS fabrics and rheology of deforming migmatites, Central Vosges, France, J. Struct. Geol., 31, 115.
  • Thomas, D. G. (1965), Transport characteristics of suspension: 8. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci., 20, 267277.
  • Tullis, T. E. (1976), Experiments on origin of slaty cleavage and schistosity, Geol. Soc. Am. Bull., 87, 745753.
  • Willis, D. G. (1977), A kinematic model of preferred orientation, Geol. Soc. Am. Bull., 88, 883894.
  • Zak, J., K. Schulmann, and F. Hrouda (2005), Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): A result of superposition of wrench-dominated regional transpression on final emplacement, J. Struct. Geol., 27, 805822.
  • Zak, J., S. R. Paterson, and V. Memeti (2007), Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): Implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust, Geol. Soc. Am. Bull., 119 (1/2), 184201.
  • Zhang, D., D. E. Smith, D. A. Jack, and S. Montgomery-Smith (2011), Numerical evaluation of single fiber motion for short-fiber-reinforced composite materials processing, J. Manuf. Sci. Eng., 133, 051002-1-9.