SEARCH

SEARCH BY CITATION

References

  • Allen, C. R. (1968), The tectonic environments of seismically active and inactive areas along the San Andreas fault system, in Proceedings of Conference on Geologic Problems of San Andreas Fault System, edited by W. R. Dickinson, and A. Grantz, Stanford Univ. Publ. Geol. Sci., 11, pp. 7080, Stanford University, Stanford, Calif.
  • Andreani, M., A.-M. Boullier, and J.-P. Gratier (2005), Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge, J. Struct. Geol., 27, 22562267.
  • Bales, R. C., and J. J. Morgan (1985), Dissolution kinetics of chrysotile at pH 7 to 10, Geoch. Cosmoch. Acta, 49, 22812288.
  • Barnes, I., and J. R. O'Neil (1969), The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States, Geol. Soc. Am. Bull., 80(10), 19471960.
  • Barnes, I., J. B. Rapp, and J. R. O'Neil (1972), Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization, Contrib. Mineral. Petrol., 35, 263276.
  • Bellot, J.-P. (2008), Natural deformation related to serpentinization of an ultramafic inclusion within a continental shear zone: The key role of fluids, Tectonophysics, 449, 133144.
  • Blanpied, M. L., D. A. Lockner, and J. D. Byerlee (1995), Frictional slip of granite at hydrothermal conditions, J. Geophys. Res., 100(B7), 13,04513,064.
  • Bos, B., and C. J. Spiers (2001), Experimental investigation into the microstructural and mechanical evolution of phyllosilicate-bearing fault rock under conditions favoring pressure solution, J. Struct. Geol., 23, 11871202.
  • Bradbury, K. K., J. P. Evans, J. S. Chester, F. M. Chester, and D. L. Kirschner (2011), Lithology and internal structure of the San Andreas fault at depth based on characterization of phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole, Earth Planet. Sci. Lett., 310, 131144, doi:10.1016/j.epsl.2011.07.020.
  • Chernak, L. J., and G. Hirth (2010), Deformation of antigorite serpentinite at high temperatures and pressures, Earth Planet. Sci. Lett., 296, 2333, doi:10.1016/j.epsl.2010.04.035.
  • Chéry, J., M. D. Zoback, and S. Hickman (2004), A mechanical model of the San Andreas Fault and SAFOD Pilot Hole stress measurements, Geophys. Res. Lett., 31, L15S13, doi:10.1029/2004GL019521.
  • Chester, F. M. (1995), A rheologic model for wet crust applied to strike-slip faults, J. Geophys. Res., 100(B7), 13,03313,044.
  • Chester, F. M., and N. G. Higgs (1992), Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions, J. Geophys. Res., 97(B2), 18591870.
  • Coleman, R. G. (1961), Jadeite deposits of the Clear Creek area, New Idria district, San Benito County, California, J. Petrol., 2(2), 209247.
  • Coleman, R. G. (1967), Low-temperature reaction zones and alpine ultramafic rocks of California, Oregon, and Washington, U. S. Geol. Survey Bull., 1247, 49 pp.
  • Cowan, D. S., and C. F. Mansfield (1970), Serpentinite flows on Joaquin Ridge, southern Coast Ranges, California, Geol. Soc. Am. Bull., 81, 26152628.
  • Dickinson, W. R. (1966), Table Mountain serpentinite extrusion in California Coast Ranges, Geol. Soc. Am. Bull., 77, 451472.
  • Ellis, A. C., E. H. Rutter, K. H. Brodie, and J. Mecklenburgh (2010), Effect of hydrothermally produced talc upon fault strength, Eos Trans AGU, 91, Fall Meet. Suppl., Abstract T41B-2116.
  • Frantz, J. D., and H. K. Mao (1976), Bimetasomatism resulting from intergranular diffusion: I. A theoretical model for monomineralic reaction zone sequences, Am. J. Sci., 276(7), 817840.
  • Frantz, J. D., and H. K. Mao (1979), Bimetasomatism resulting from intergranular diffusion: II. Prediction of multimineralic zone sequences, Am. J. Sci., 279(3), 302323.
  • Fulton, P. M., D. M. Saffer, R. N. Harris, and B. A. Bekins (2004), Re-evaluation of heat flow data near Parkfield, CA: Evidence for a weak San Andreas fault, Geophys. Res. Lett., 31, L15S15, doi:10.1029/2003GL019378.
  • Galehouse, J. S., and J. J. Lienkaemper (2003), Inferences drawn from two decades of alinement array measurements of creep on faults in the San Francisco Bay region, Seismol. Soc. Am. Bull., 93, 24152433, doi:10.1785/0120020226.
  • Hanna, W. F., R. D. Brown Jr., D. C. Ross, and A. Griscom (1972), Aeromagnetic reconnaissance and generalized geologic map of the San Andreas fault between San Francisco and San Bernardino, California, U. S. Geol. Surv. Geophys. Invest. Map, GP-815, scale 1:250,000.
  • Hickman, S., and M. Zoback (2004), Stress orientations and magnitudes in the SAFOD pilot hole, Geophys. Res. Lett., 31, L15S12, doi:10.1029/2004GL020043.
  • Hirauchi, K.-I., S. A. M. den Hartog, and C. J. Spiers (2013), Weakening of the slab-mantle wedge interface induced by metasomatic growth of talc, Geology, 41(1), 7578, doi:10.1130/G33552.1.
  • Irwin, W. P. (1990), Geology and plate-tectonic development, in The San Andreas Fault System, California, edited by R. E. Wallace, U. S. Geol. Surv. Prof. Pap., 1515, pp. 6180.
  • Irwin, W. P., and I. Barnes (1975), Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas fault system in central and northern California, Geology, 3(12), 713716.
  • Jahns, R. H. (1967), II. Serpentinites of the Roxbury district, Vermont, in Ultramafic and Related Rocks, edited by P. J. Wyllie, and E. Robert, pp. 137160, Krieger Publishing Company, New York.
  • Koons, P. O. (1981), A study of natural and experimental metasomatic assemblages in an ultramafic-quartzofeldspathic system from the Haast Schist, South Island, New Zealand, Contrib. Mineral. Petrol., 78, 189195.
  • Krauskopf, K. B. (1967), Introduction to Geochemistry, McGraw-Hill Book Company, New York.
  • Lin, F.-C., and C. V. Clemency (1981), The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure, Am. Mineral., 66, 801806.
  • Lockner, D. A., C. Morrow, D. Moore, and S. Hickman (2011), Low strength of deep San Andreas Fault gouge from SAFOD core, Nature, 472, 8285, doi:10.1038/nature09927.
  • Lockwood, J. P. (1971), Sedimentary and gravity-slide emplacement of serpentinite, Geol. Soc. Am. Bull., 82, 919936.
  • Lockwood, J. P. (1972), Possible mechanism for the emplacement of Alpine-type serpentinites, Geol. Soc. Am. Mem., 132, 273287.
  • Luce, R. W., R. W. Bartlett, and G. A. Parks (1972), Dissolution kinetics of magnesium silicates, Geoch. Cosmoch. Acta, 36, 3550.
  • McFarland, F. S., J. J. Lienkaemper, and S. J. Caskey (2009), Data from theodolite measurements of creep rates on San Francisco Bay region faults, California, 1979–2011, U. S. Geol. Surv. Open File Rep., 2009-1119, 18 pp., http://pubs.usgs.gov/of2009/1119/, last accessed.
  • Moore, D. E., and D. A. Lockner (2007), Comparative deformation behavior of minerals in serpentinized ultramafic rock: Application to the slab-mantle interface in subduction zones, Int. Geol. Rev., 49, 401415, doi:10.2747/0020-6814.49.5.401.
  • Moore, D. E., and D. A. Lockner (2008), Talc friction in the temperature range 25°–400°C: Relevance for fault-zone weakening, Tectonophysics, 449, 120132, doi:10.1016/j.tecto.2007.11.039.
  • Moore, D. E., and D. A. Lockner (2011), Frictional strengths of talc-serpentinite and talc-quartz mixtures, J. Geophys. Res., 116, B01403, doi:10.1029/2010JB07881.
  • Moore, D. E., D. A. Lockner, R. Summers, J. D. Byerlee, and S. Ma (1996a), Sample characterizations and strength measurements of serpentinite gouges, U.S. Geol. Surv. Open File Rep., 96-702, 88 pp.
  • Moore, D. E., D. A. Lockner, R. Summers, S. Ma, and J. D. Byerlee (1996b), Strength of chrysotile-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault?, Geology, 24(11), 10411044.
  • Moore, D. E., C. A. Morrow, and J. Byerlee (1987), Fluid-rock alteration and fracture development in “crystalline” rock types, U.S. Geol. Surv. Open File Rep., 87-279, 53 pp.
  • Moore, D. E., D. A. Lockner, S. Ma, R. Summers, and J. D. Byerlee (1997), Strengths of serpentinite gouges at elevated temperatures, J. Geophys. Res., 102, 14,78714,801.
  • Moore, D. E., D. A. Lockner, H. Tanaka, and K. Iwata (2004), The coefficient of friction of chrysotile gouge at seismogenic depths, Int. Geol. Rev., 46, 385398, doi:10.2747/0020-6814.46.5.385.
  • Moore, D. E., D. A. Lockner, and D. A. Ponce (2010), Anomalously low strength of serpentinite sheared against granite and implications for creep on the Hayward and Calaveras Faults, in Proceedings of the Third Conference on Earthquake Hazards in the Eastern San Francisco Bay Area, edited by K. Knudsen et al., California Geol. Surv. Spec. Rep., 219, pp. 101113, California Geological Survey (Dept. of Natural Resources), Sacramento, Calif.
  • Moore, D. E., and M. J. Rymer (2012), Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD), J. Struct. Geol., 38, 5160, doi:10.1016/j/jsg.2011.11.014.
  • Mori, Y., T. Nishiyama, and T. Yanagi (2007), Chemical mass balance in a reaction zone between serpentinite and metapelites in the Nishisonogi metamorphic rocks, Kyushu, Japan: Implications for devolatilization, Island Arc, 16, 2839, doi:10.1111/j.1440-1738.2007.00556.x.
  • Ohlin, H. N., R. J. McLaughlin, B. C. Moring, and T. L. Sawyer (2010), Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California, U. S. Geol. Surv. Open File Rep., 2010-1301, 32 pp.
  • Page, B. M., L. A. DeVito, and R. G. Coleman (1999), Tectonic emplacement of serpentinite southeast of San Jose, California, Int. Geol. Rev., 41, 494505.
  • Phipps, S. P. (1984), Ophiolitic olistostromes in the basal Great Valley sequence, Napa County, northern Coast Ranges, in Mélanges: Their Nature, Origin and Significance, edited by L. A. Raymond, Geol. Soc. Am. Spec. Pap., 198, 103126.
  • Raleigh, C. B., and M. S. Paterson (1965), Experimental deformation of serpentinite and its tectonic implications, J. Geophys. Res., 70, 39653985.
  • Reinen, L. A., and T. E. Tullis (1995), Microstructural evidence of strain localization and distributed strain in serpentine friction experiments, Eos Trans AGU, 76(46), Fall Meet. Suppl., F566.
  • Reinen, L. A., J. D. Weeks, and T. E. Tullis (1991), The frictional behavior of serpentinite: Implications for aseismic creep on shallow crustal faults, Geophys. Res. Lett., 18, 19211924.
  • Reinen, L. A., T. E. Tullis, and J. D. Weeks (1992), Two-mechanism model for frictional sliding of serpentinite, Geophys. Res. Lett., 19, 15351538.
  • Reinen, L. A., J. D. Weeks, and T. E. Tullis (1994), The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults, Pure Appl. Geophys., 143, 317358.
  • Rutter, E. H., and D. H. Mainprice (1978), The effect of water on stress relaxation of faulted and unfaulted sandstone, Pure Appl. Geophys., 116, 634654.
  • Rutter, E. H., and D. H. Mainprice (1979), On the possibility of slow fault slip controlled by a diffusive mass transfer process, Gerlands Beitr. Geophysik. Leipzig, 88, 154162.
  • Saleeby, J. B. (1984), Tectonic significance of serpentinite mobility and ophiolitic mélange, in Mélanges: Their Nature, Origin and Significance, edited by L. A. Raymond, Geol. Soc. Am. Spec. Pap., 198, 153168.
  • Sanford, R. F. (1982), Growth of ultramafic reaction zones in greenschist to amphibolite facies metamorphism, Am. J. Sci., 282, 5543616.
  • Scott, D. R., D. A. Lockner, J. D. Byerlee, and C. G. Sammis (1994), Triaxial testing of Lopez fault gouge at 150 MPa mean effective stress, Pure Appl. Geophys., 142, 749775.
  • Tembe, S., D. A. Lockner, and T.-F. Wong (2010), Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite, J. Geophys. Res., 115, B03416, doi:10.1029/2009JB006383.
  • Titus, S. J., C. DeMets, and B. Tikoff (2006), Thirty-five-year creep rates for the creeping segment of the San Andreas Fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters, Seismol. Soc. Am. Bull., 96(4B), S250S268, doi:10.1785/0120050811.
  • Titus, S. J., M. Dyson, C. DeMets, B. Tikoff, F. Rolandone, and R. Bürgmann (2011), Geologic versus geodetic deformation adjacent to the San Andreas fault, central California, Geol. Soc. Am. Bull., 123, 794820, doi:10.1130/B30150.1.
  • Welton, J. E. (1984), SEM Petrology Atlas, AAPG Methods in Exploration Series, 4, AAPG, Tulsa, Oklahoma.
  • Williams, C. F., F. V. Grubb, and S. P. Galanis, Jr. (2004), Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault, Geophys. Res. Lett., 31, L15S14, doi:10.1029/2003GL019352.
  • Zoback, M., S. Hickman, and W. Ellsworth (2011), Scientific drilling into the San Andreas Fault zone—An overview of SAFOD's first five years, Sci. Drill., 11, 1428, doi:10.2204/iodp.sd.11.02.2011.