Journal of Geophysical Research: Atmospheres

Eruption of the Eyjafjallajökull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere

Authors

  • F. Navas-Guzmán,

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • D. Müller,

    1. Gwangju Institute of Science and Technology (GIST), Buk-Gu, Republic of Korea
    2. Leibniz Institute for Tropospheric Research (IfT), Leipzig, Germany
    3. Now at Science Systems and Applications, Inc., NASA Langley Research Center,, Hampton, USA
    Search for more papers by this author
  • J. A. Bravo-Aranda,

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • J. L. Guerrero-Rascado,

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • M. J. Granados-Muñoz,

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • D. Pérez-Ramírez,

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • F. J. Olmo,

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • L. Alados-Arboledas

    1. Department of Applied Physics, University of Granada, Granada, Spain
    2. Andalusian Center for Environmental Research, Universidad de Granada, Granada, Spain
    Search for more papers by this author

Corresponding author: F. Navas-Guzmán, Department of Applied Physics, University of Granada, Granada, 18071, Spain. (fguzman@ugr.es)

Abstract

[1] A fraction of the volcanic plume that originated from the Eyjafjallajökull volcanic eruption on Iceland in 2010 reached the southern Iberian Peninsula in May 2010. The plume was monitored and characterized in terms of optical and microphysical properties with a combination of Raman lidar and star- and Sun-photometers. Our observations showed that the plume arriving at the Iberian Peninsula was mainly composed of sulphate and sulphuric-acid particles. To our knowledge, this is the first study of optical properties and inverted microphysical properties of volcanic sulphate particles in the lower troposphere/boundary layer based on multiwavelength Raman lidar measurements. A remarkable increase in the particle number concentration in the accumulation mode was determined from the inversion of the aerosol optical properties. The large Ångström exponents and low linear particle depolarization ratios (4–7%) indicated the presence of small and spherical particles. The particle effective radii ranged between 0.30 and 0.55 µm. In situ instrumentation confirmed an increase of sulphate particles at ground level during this period.

Ancillary