SEARCH

SEARCH BY CITATION

References

  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor (2012), Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.
  • Bodas-Salcedo, A., et al. (2011), COSP: Satellite simulation software for model assessment, Bull. Amer. Meteor. Soc., 92, 10231043.
  • Bony, S., and J.-L. duFresne (2005), Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.
  • Bony, S., M. Webb, C. Bretherton, S. Klein, P. Siebesma, G. Tselioudis, and M. Zhang (2011), CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models, CLIVAR Exchanges, 56, International CLIVAR Project Office, Southampton, United Kingdom, 2024.
  • Bretherton, C. S., and S. Park (2009), A new moist turbulence parameterization in the Community Atmosphere Model, J. Clim., 22, 34223448.
  • Cessana, G., and H. Chepfer (2012), How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models, Geophys. Res. Lett., 39, L20803, doi:10.1029/2012GL053153.
  • Collins, W. D., et al. (2006), The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3), J. Clim., 19, 21442161.
  • Collins, W. J., et al. (2008), Evaluation of the HadGEM2 model, Met Office Hadley Centre Technical Note no. HCTN 74, Met Office, FitzRoy Road, Exeter EX1 3 PB, United Kingdom.
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm (1996), Overview of Arctic cloud and radiation characteristics, J. Clim., 9, 17311764.
  • Dai, A. (2006), Precipitation characteristics in eighteen coupled climate models, J. Clim., 19, 46054630.
  • Donner, L. J., et al. (2011), The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3, J. Clim., 24, 34843519.
  • Garay, M. J., S. P. de Szoeke, and C. M. Moroney (2008), Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations, J. Geophys. Res., 113, D18204, doi: 10.1029/2008JD009975.
  • Gates, W. L., et al. (1999), An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I), Bull. Amer. Meteor. Soc., 80, 2955.
  • Gent, P. R., et al. (2011), The Community Climate System Model Version 4, J. Clim., 24, 49734991.
  • Gettelman, A., H. Morrison, and S. J. Ghan (2008), A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model (CAM3), Part II: Single-column and global results, J. Clim., 21, 36603679.
  • GFDL GAMDT (2004), The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations, J. Clim., 17, 46414673.
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux (2008), Performance metrics for climate models, J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.
  • Gregory, J. M., and M. J. Webb (2008), Tropospheric adjustment induces a cloud component in CO2 forcing, J. Clim., 21, 5871.
  • Hourdin, F., et al. (2006), The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dyn., 27, 787813.
  • IPCC (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, [ Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
  • Jiang, J., et al. (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations, J. Geophys. Res., doi:10.1029/2011JD017237.
  • Kay, J., et al. (2012), Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators, J. Clim., 25, 51905207.
  • Klein, S. A., and C. Jakob (1999), Validation and sensitivities of frontal clouds simulated by the ECMWF model, Mon. Weather Rev., 127, 25142531.
  • Lauer, A., and K. Hamilton (2012), Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data, J. Clim., doi:10.1175/JCLI-D-12-00451.1, in press.
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith (2000), A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests, Mon. Wea. Rev., 128, 31873199.
  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa (1996), Peruvian stratus clouds and the tropical pacific circulation: A coupled ocean-atmosphere GCM study, J. Clim., 9, 16351645.
  • Mace, G. G., Q. Zhang, M Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker (2009), A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data, J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.
  • Mace, G. G., S. Houser, S. Benson, S. A. Klein, and Q. Min (2011), Critical evaluation of the ISCCP simulator using ground-based remote sensing data, J. Clim., 24, 15981612.
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow (2010), A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS, J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.
  • Martin, G. M., et al. (2006), The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology, J. Clim., 19, 12741301.
  • McAvaney, B. J., and H. Le Treut (2003), The cloud feedback intercomparison project: (CFMIP). CLIVAR Exchanges, 26, International CLIVAR Project Office, Southampton, United Kingdom, 1-4.
  • Meehl, G., C. Covey, T. L. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, and R. J. Stouffer, and K. E. Taylor (2007), The WCRP CMIP3 multimodel dataset: A new era in climate change research, Bull. Amer. Meteor. Soc., 88, 13831394.
  • Morrison, H., and A. Gettelman (2008), A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and numerical tests, J. Clim., 21, 36423659.
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer (2012), The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., 39, L21801, doi:10.1029/2012GL053421.
  • Neale, R. B., et al. (2011), Description of the NCAR Community Atmosphere Model (CAM5), Technical Report NCAR/TN-486 + STR, National Center for Atmospheric Research, Boulder, Colorado, U. S. A., 268 pp.
  • Ogura, T., et al. (2008), Towards understanding cloud response in atmospheric GCMs: The use of tendency diagnostics, J. Met. Soc. Japan, 86, 6979.
  • Park, S., and C. S. Bretherton (2009), The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model, J. Clim., 22, 34493469.
  • Pincus, R., H. W. Barker, and J. Morcrette (2003), A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds, J. Geophys. Res., 108(D13), 4376, doi:10.1029/2002JD003322.
  • Pincus, R., C. P. Batstone, R. J. P. Hofmann, K. E. Taylor, and P. J. Gleckler (2008), Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models, J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, R. J. P. Hoffmann (2012), Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators, J. Clim., 25, 46994720.
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The impact of new physical parametrizations in the Hadley Centre climate model – HadAM3, Clim. Dyn., 16, 123146.
  • Rossow, W. B., and R. A. Schiffer (1991), International Satellite Cloud Climatology Project (ISCCP) cloud data products, Bull. Amer. Meteor. Soc., 72, 220.
  • Rossow, W. B., and R. A. Schiffer (1999), Advances in understanding clouds from ISCCP, Bull. Amer. Meteor. Soc., 80, 22612288.
  • Slingo, A., and J.-M. Slingo (1988), The response of a general circulation model to cloud longwave radiative forcing. I. Introduction and initial experiments, Quart. J. Roy. Met. Soc., 114, 10271062.
  • Stevens, B., et al. (2013), The atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model Earth Syst., doi:10.1002/jame.20015.
  • Stubenrauch, C., S. Kinne, and the GEWEX Cloud Assessment Team (2009), Assessment of global cloud climatologies, GEWEX Newsletter, 19, International GEWEX Project Office, Silver Spring, Maryland, Unites States of America, 6-7.
  • Stephens, G. (2010), Is there a missing low-cloud feedback in current climate models? GEWEX Newsletter, 20, International GEWEX Project Office, Silver Spring, Maryland, United States of America, 5-7.
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the experimental design, Bull. Amer. Meteor. Soc., 93, 485498.
  • Voldoire, et al. (2012), The CNRM-CM5.1 global climate model: description and basic evaluation, Clim. Dyn., doi:10.1007/s00382-011-1259-y.
  • von Salzen, K., N. A. McFarlane, and M. Lazare (2005), The role of shallow convection in the water and energy cycles of the atmosphere, Clim. Dyn., 25, 671688, doi: 10.1007/s00382-005-0051-2.
  • von Salzen, K., et al. (2012), The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4): Part I: Representation of physical processes, Atmos.-Ocean, in press.
  • Watanabe, M., et al. (2010), Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23, 63126335.
  • Webb, M., C. Senior, S. Bony, and J. J. Morcrette (2001), Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models, Clim. Dyn., 17, 905922.
  • Webb, M. J., F. H. Lambert, and J. M. Gregory (2012), Origins of differences in climate sensitivity, forcing, and feedbacks in climate models, Clim. Dyn., doi:10.1007/s00382-012-1336-x.
  • Williams, K. D., and M. J. Webb (2009), A quantitative performance assessment of cloud regimes in climate models. Clim. Dyn., 33, 141157.
  • Wilson, D. R., and S. P. Ballard (1999), A microphysically based precipitation scheme for the U. K. Meteorological Office Unified Model, Q. J. Roy. Met. Soc., 125, 16071636.
  • Winker, D., et al. (2009), Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic Technol., 26, 23102323.
  • Wu, T., et al. (2010), The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate, Clim. Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.
  • Yang, G.-Y., and J. Slingo, (2001), The diurnal cycle in the tropics, Mon. Wea. Rev., 129, 784801.
  • Yokohata, T., et al. (2008), Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models, Tellus, 60A, 946961.
  • Yukimoto, S., et al. (2011), Meteorological Research Institute – Earth System Model Version 1 (MRI-ESM1): Model Description, Technical Report #64, Meteorological Research Institute, Tsukuba-city, Ibaraki 305-0052, Japan, 96 pp.
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann (2012), Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels, J. Clim., 25, 37153735.
  • Zhang, M. H., et al. (2005), Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.