SEARCH

SEARCH BY CITATION

References

  • Anderson, G., S. Clough, F. Kneizys, and J. Chetwynd (1986), AFGL atmospheric constituent profiles (0–120 km). GL-TR-86-0110, Air Force Geophys. Lab., Hascom AFB, Mass., USA.
  • Arvizu, D., et al. (2011), Direct Solar Energy, in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, edited by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,1075 pages in total, p. 333–400.
  • Bishop, J. K. B., W. B. Rossow, and E. G. Dutton (1997), Surface solar irradiance from the International Satellite Cloud Climatology Project 1983-1991, J. Geophys. Res., 102(D6), 68836910.
  • Coakley, J. A., M. A. Friedman, and W. R. Tahnk (2005), Retrieval of cloud properties for partly cloudy imager pixels, J. Atmos. Oceanic Technol., 22, 317.
  • de Haan, J. F., P. B. Bosma, and J. W. Hovenier (1987), The adding method for multiple scattering computations of polarized light, Astron. Astrophys., 183, 371391.
  • Deneke H. M., A. J. Feijt, and R. A. Roebeling (2008), Estimating surface solar irradiance from Meteosat SEVIRI-derived cloud properties, Remote Sens. Environ., 112, 31313141.
  • Deneke, H. M., W. H. Knap, and C. Simmer (2009), Multiresolution analysis of the temporal variance and correlation of transmittance and reflectance of an atmospheric column, J. Geophys. Res., 114, D17206, doi:10.1029/2008JD011680.
  • Dürr, B., and A. Zelenka (2009), Deriving surface global irradiance over the Alpine region from Meteosat Second Generation data by supplementing the HELIOSAT method, Int. J. Remote Sens., 30(22), 58215841.
  • Dürr, B., A. Zelenka, R. Müller, and P. Philipona (2010), Verification of CM-SAF and MeteoSwiss satellite based retrievals of surface shortwave irradiance over the Alpine region, Int. J. Remote Sens., 31(15), 41794198.
  • Freidenreich, S. M., and V. Ramaswamy (2011), Analysis of the biases in the downward shortwave surface flux in the GFDL CM2.1 general circulation model, J. Geophys. Res., 116, D08208, doi:10.1029/2010JD014930.
  • Greuell, W., and R.A. Roebeling (2009), Towards a standard procedure for validation of satellite-derived cloud liquid water path: a study with SEVIRI data, J. Appl. Meteor. Climatol., 48, 15751590.
  • Gueymard, C. A. (2004), The sun's total and spectral irradiance for solar energy applications and solar radiation models, Sol. Energy, 76, 423453.
  • Gupta, S. H., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse Jr. (1999), A climatology of surface radiation budget derived from satellite data, J. Climate, 12, 26912710.
  • Hess, M., R. B. A. Koelemeijer, and P. Stammes (1998), Scattering matrices of imperfect hexagonal ice crystals, J. Quant. Spectrosc. Radiat. Transfer, 60(3), 301308.
  • Holben, B. N., et al. (1998), AERONET—a federated instrument network and data archive for aerosol characterization, Rem. Sens. Environ., 66, 116.
  • Hollmann, R., et al. (2011), ‘CM SAF Annual Product Quality Assessment Report 2010’, Doc.no. SAF/CM/DWD/VAL/OR6, issue 1.1, 21 December 2011, 105 pp, available from http://www.cmsaf.eu.
  • Huang, G., M. Ma, S. Liang, S. Liu, and X. Liu (2011), A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data, J. Geophys. Res., 116, D22201, doi:10.1029/2011JD016120.
  • Journée, M., and C. Bertrand (2010), Improving the spatial-temporal distribution of surface solar radiation data by merging ground and satellite measurements, Remote Sens. Environ., 114, 26922704.
  • Journée, M., R. Stöckli, and C. Bertrand (2012), Sensitivity to spatial resolution of satellite-derived daily surface solar irradiation, Remote Sens. Lett., 3(4), 315324.
  • Kato, S., L. M. Hinkelman, and A. Cheng (2006), Estimate of satellite-derived COT and effective radius errors and their effect on computed domain-averaged irradiances, J. Geophys. Res., 111, D17201, doi:10.1029/2005JD006668.
  • Kinne, S., et al. (2006), An AeroCom initial assessment—optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 18151834, doi:10.5194/acp-6-1815-2006.
  • Klucher, T. M. (1979), Evaluation of models to predict insolation on tilted surfaces, Solar Energy, 23, 111114.
  • Kuipers Munneke, P., C. H. Reijmer, M. R. van den Broeke, G. König-Langlo, P. Stammes, and W. H. Knap (2008), Analysis of clear-sky Antarctic snow albedo using observations and radiative transfer modeling, J. Geophys. Res., 113, D17118, doi:10.1029/2007JD009653.
  • Lee, W.-L., K. N. Liou, and A. Hall (2011), Parameterization of solar fluxes over mountain surfaces for application to climate models, J. Geophys. Res., 116, D01101, doi:10.1029/2011JD014722.
  • Marshak, A., S. Platnick, T. Varnái, G. Wen, and R. F. Cahalan (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
  • Moody, E. G., M. D. King, C. B. Schaaf, and S. Platnick (2008), MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages, J. Appl. Meteor. Climatol., 47, 28792894.
  • Müller, R. W., C. Matsoukas, A. Gratzki, H. D. Behr, and R. Hollmann (2009), The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—a LUT based eigenvector hybrid approach, Remote Sens. Environ., 113, 10121024.
  • Ohmura, A., et al. (1998), Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research, Bull. Am. Meteorol. Soc., 79, 21152136, doi:10.1175/1520-0477.
  • Oreopoulos, L., and E. Mlawer (2010), The Continual Intercomparison of Radiation Codes (CIRC), Bull. Am. Met. Soc., 91, 305310, doi:10.1175/2009BAMS2732.1.
  • Rodell, M., et al. (2004), The global land data assimilation system, Bull. Am. Met. Soc., 85, 381394.
  • Roebeling, R. A., A. J. Feijt, and P. Stammes (2006), Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17, J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.
  • Roebeling R. A., H. M. Deneke, and A. J. Feijt (2008), Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations, J. Appl. Meteor. Climatol., 47, 206222.
  • Schulz, J., et al. (2009), Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem. Phys., 9(5), 16871709.
  • Shi, Y., and C. N. Long (2002), Techniques and methods used to determine the best estimate of radiation fluxes at SGP central facility, in Proceedings of the Twelfth ARM Science Team Meeting, edited by D. Carrothers, U.S. Dep. of Energy, Richland, Wash, 12 pp.
  • Stammes, P. (2001), Spectral radiance modelling in the UV-Visible range, in IRS 2000: Current problems in atmospheric radiation, edited by W. L. Smith and Y. M. Timofeyev, pp. 385388, A. Deepak Publ., Hampton, VA.
  • Stoffel, T. (2005), Solar Infrared Radiation Station (SIRS) Handbook. Tech. Rep., ARM TR-025, 29 pp., Atmos. Radiat. Meas. Program, U.S. Dep. of Energy, Washington, D. C. (available at http://www.arm.gov.)
  • Strahler, A. H., et al. (1999), MODIS BRDF/albedo product: ATBD, Version 5.0, April, 1999.
  • Šúri, M., T. A. Huld, and E. D. Dunlop (2005), A web-based solar radiation database for the calculation of PV potential in Europe, Int. J. Sustain. Energy, 24(2), 5567.
  • Šúri, M., T. Cebecauer, and A. Skoczek (2011), SolarGIS: solar data and online applications for PV planning and performance assessment. 26th European photovoltaics solar energy conference, September 2011, Hamburg, Germany.
  • Wang, H., and R. T. Pinker (2009), Shortwave radiative fluxes from MODIS: model development and implementation, J. Geophys. Res., 114, D20201, doi:10.1029/2008JD010442.
  • Wang, P., W. H. Knap, P. Kuipers-Munneke, and P. Stammes (2009), Clear-sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands, J. Geophys. Res., 114, D14206, doi:10.1029/2009JD011978.
  • Wang, P., W. H. Knap, and P. Stammes (2011a), Cloudy-sky shortwave radiative closure for a Baseline Surface Radiation Network site, J. Geophys. Res., 116, D08202, doi:10.1029/2010JD015141.
  • Wang, P., P. Stammes, and R. Müller (2011b), Surface solar irradiance from SCIAMACHY measurements: algorithm and validation, Atmos. Meas. Tech., 4, 875891.
  • Zhang, Z., and S. Platnick (2011), An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands, J. Geophys. Res., 116, D20215, doi:10.1029/2011JD016216.
  • Zib, B. J., X. Dong, B. Xi, and A. Kennedy (2012), Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations, J. Climate, 25, 22912305.
  • Zinner, T., and B. Mayer (2006), Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity, J. Geophys. Res., 111, D14209, doi:10.1029/2005JD006955.