• solar proxy;
  • beryllium-10;
  • atmospheric modeling;
  • climate impact;
  • production

[1] Ice core concentrations of 10Be are used as a proxy for solar activity, but they might be affected by atmospheric transport and deposition and their changes. During the Holocene, the influence is likely to be small, but during glacials it has to be accounted for. First, the climate influence has to be understood during the present climate. This study uses an ECHAM5-HAM 30-year climatological simulation of 10Be to investigate the production and climate-related influences on 10Be deposition with focus on Greenland and Antarctica. We examine the climate modes driving snow accumulation and hence potentially 10Be deposition over a climatologically relevant period. The North Atlantic Oscillation (NAO) is found to be the main driver of changes in precipitation and 10Be deposition in Greenland, in agreement with previous studies. In Antarctica, the picture is more complex as precipitation and 10Be deposition are only weakly correlated with the Southern Annular Mode (SAM), El Niño-Southern Oscillation (ENSO), or Zonal Wave 3 pattern (ZW3). The results suggest that on seasonal scale, 10Be deposition is linked with both precipitation rate and tropopause height, mainly due to the similar seasonal cycle. However, the correlation with tropopause height persists on the annual time scale. All in all, 10Be variability in Antarctica is an interplay of several processes whose contribution varies in time and space. When interpreting 10Be ice core records for solar activity, the time scale is essentially important. On seasonal scale, the 10Be signal is dominated by weather influences, but on multiannual scales, the production rate is the main driver. On multidecadal scale, large long-term trends in climatic factors have the potential to distort the signal again as is seen in 10Be records during glacials. This study shows how climate modes connect to 10Be variability and how this connection could be used to correct for the climate impact. The established connections during present climatic conditions can be used as a basis to investigate these connections during glacial climate in a glacial model simulation.