• Airparif, (2007). Guide pratique d'utilisation pour l'estimation de l'incertitude de mesure des concentrations en polluants dans l'air ambiant, Tech. Rep. Version 9, AIRPARIF.
  • Bouttier F., P Courtier (1999), Data Assimilation Concepts and Methods, Meteorological Training Course Lecture Series, ECMWF.
  • Chai, T., et al. (2007), Four-dimensional data assimilation experiments with international consortium for atmospheric research on transport and transformation ozone measurements. J. Geophys. Res. 112: D12S15, DOI: 10.1029/2006JD007763.
  • Chang, J. C., S. R. Hanna (2004) Air quality model performance evaluation. Meteorol. Atmos. Phys. 87: 167196., DOI: 10.1007/s00703-003-0070-7.
  • Derwent R. G. and D. R. Middleton (1996), An empirical function for the ratio NO 2:NO x. Clean Air, 26, 5760.
  • Carruthers, D. J., H. E. C. M. and R. Singles, (1998), Development of ADMS-urban and comparison with data for urban areas in the UK. Proc. of Air Pollution Modelling and its Application XII, Tech. rep., CERC.
  • Driedonks, A. (1982), Models and observations of the growth of the atmospheric boundary layer, Boundary-Layer Meteorology 23, 283306.
  • Elbern H. and H. Schmidt (2001), Ozone episode analysis by four-dimensional variational chemistry data assimilation, J. Geophys. Res. 106(D4), 3,5693,590.
  • Hertel, O., and R. Berkowicz, (1989), Operational street pollution model (OSPM), Evaluation of the model on data from st olavs street in Oslo, Tech. Rep., DMU Luft.
  • Holtslag A., and A. V. Ulden (1983), A simple scheme for daytime estimates of the surface fluxes from routine weather data, J. Appl. Meteorol. Clim., 22, 517529.
  • Nieuwstadt, F. (1981), The steady-state height and resistance laws of the nocturnal boundary layer : Theory compared with Cabauw observations, Boundary-Layer Meteorology 317.
  • Pradelle, F., A. Armengaud, C. Pesin, M. N. Rolland, J. Virga, G. Luneau, C. Schillinger, and D. Poulet (2010), Urban Air System: An Operational Modelling System for Survey and Forecasting Air Quality at Urban Scale. 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 688692, Paris, France.
  • Pradelle, F., F. Brocheton, B. Chabanon, C. Honoré, F. Dugay, K. Léger, F. Dambre, V. Mallet, and A. Tilloy (2011), The “Votre Air” Project: Development of a Modelling Tool to Assess the Real Atmospheric Exposure in Paris. 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 448451, Kos Island, Greece.
  • Riishojgaard, L. P. (1998), A direct way of specifying flow-dependent background error correlations for meteorological analysis systems. Tellus, 50A, 4257.
  • Segers, A. (2002), Data assimilation in atmospheric chemistry models using Kalman filtering, PhD thesis, Delft University.
  • Tennekes, H. (1973), A model for the dynamics of the inversion above a convective boundary layer, J. Atmos. Sci. 30, 558567.
  • Tennekes, H., and A. Driedonks (1981), Basic entrainment equations for the atmospheric boundary layer, Boundary-Layer Meteorology, 20, 515229.
  • Wu, L., V. Mallet, M. Bocquet, and B. Sportisse (2008), A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res., 113, D20310., DOI: 10.1029/2008JD009991.