SEARCH

SEARCH BY CITATION

References

  • Anlauf, K. G., P. Fellin, and H. A. Wiebe (1982), The Nanticoke shoreline diffusion experiment, June 1978—IV. A. Oxidation of sulphur dioxide in a power plant plume. B. Ambient concentrations and transport of sulphur dioxide, particulate sulphate and nitrate, and ozone, Atmos. Environ., 16, 455466.
  • Banic, C., S. T. Beauchamp, R. J. Tordon, W. H. Schroeder, A. Steffen, K. A. Anlauf, and H. K. T. Wong (2003), Vertical distribution of gaseous elemental mercury in Canada. J. Geophys. Res., 108(D9), 4264, doi:10.1029/2002JD002116.
  • Banic, C., et al. (2006), The physical and chemical evolution of aerosols in smelter and power plant plumes: An airborne study, Geochem. Explor. Environ. Anal., 6, 111120.
  • Berg, T., J. Bartnicki, J. Munthe, H. Lattila, J. Hrehoruk, and A. Mazur (2001), Atmospheric mercury species in the European Arctic measurements and modeling, Atmos. Environ., 35, 25692582.
  • Bergan, T., L. Gallardo, and H. Rodhe (1999), Mercury in the global troposphere: A three-dimensional model study, Atmos. Environ., 33, 15751585.
  • Blanchard, P., F. A. Froude, J. B. Martin, H. Dryfhout-Clark, and J. T. Woods (2002), Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada, Atmos. Environ., 36, 37353743.
  • Center for Environmental Cooperation (CEC) of North America (2004), North American Power Plant Emissions, CEC, Montreal, Quebec, Canada.
  • Côté, J., J.-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth (2007), The Operational CMC/MRB global environmental multiscale (GEM) model. [Available at http://www.msc-smc.ec.gc.ca/cmc library/index e.html].
  • Curtis, K. E., and A. M. Sills (1999), Measurement of speciated mercury emissions from unit 6, OPT Rep. 7209-100-1999-RA-0002-R00, Nanticoke GS.
  • Daggupaty, S. M., R. S. Tangirala, and H. Sahota (1994), BLFMESO, a 3-dimensional mesoscale meteorological model for microcomputers, Bound.-Lay. Meteorol., 71, 81107.
  • Daggupaty, S. M., C. Banic, P. Cheung, and J. Ma (2006), Numerical simulation of air concentration and deposition of particulate metals around a copper smelter in northern Quebec, Canada, Geochem.: Explor., Environ., Anal., 6(2–3), 139146.
  • Daggupaty, S. M., C. M. Banic, and P. Blanchard (2009), Numerical simulation of atmospheric loadings of mercury from a coal-fired power plant to Lake Erie. 11th Conference on Atmospheric Chemistry, January 2009, Phoenix, Arizona, USA, 1115.
  • Deeds, D., É. Guérette, A. Tessier, and P. A. Ariya (2009), A novel method for the study of the chemical speciation of mercury in air, Eos Trans. AGU, 90(52), Fall Meet Suppl., Abstr. A51G-0205.
  • Ebinghaus, R., and F. Slemr (2000), Aircraft measurements of atmospheric mercury over southern and eastern Germany, Atmos. Environ., 34, 895903.
  • Ebinghaus, R., C. Banic, S. Beauchamp, D. Jaffe, H. Kock, N. Pirrone, L. Poissant, F. Sprovieri, and P. Weiss-Penzias (2009), Spatial coverage and temporal trends of land-based atmospheric mercury measurements in the Northern and Southern Hemispheres, chapter 9, in Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models, edited by N. Pirrone, and R. Mason, Springer US, Springer-Verlag, New York, pp. 223–291, doi:10.1007/978-0-387-93958-2_9.
  • Edgerton, E. S., B. E. Hartsell, and J. J. Jansen (2006), Mercury speciation in coal-fired power plant plumes observed at three surface sites in the Southeastern U.S., Environ. Sci. Technol., 40, 45634570.
  • Gårdfeldt, K., and M. Jonsson (2003), Is bimolecular reduction of Hg(II) complexes possible in aqueous systems of environmental importance, J. Phys. Chem. A, 107, 44784482.
  • Gatz, D. F. (1975), Pollutant aerosol deposition into southern Lake Michigan, Water Air Soil Poll., 5, 239251.
  • Kellie, S., Y. Duan, Y. Cao, P. Chu, A. Mehta, R. Carty, K. Liu, W.-P. Pan, and J. T. Riley (2004), Mercury emissions from a 100-MW wall-fired boiler as measured by semicontinuous mercury monitor and Ontario Hydro Method, Fuel Process. Technol., 85, 487499.
  • Kerman, B. R., R. E. Mickle, R. V. Portelli, and N. B. Trivett (1982), The Nanticoke Shoreline Diffusion Experiment, June 1978 - II. Internal Boundary Layer Structure, Atmos. Environ., 16, 423437.
  • Kos, G., A. Ryzhkov, A. Dastoor, J. Narayan, A. Steffen, P. A. Ariya, and L. Zhang (2012), Evaluation of discrepancy between measured and modeled oxidized mercury, Atmos. Chem. Phys. Discuss., 12, 17,24517,293.
  • Lai, S.-O., T. M. Holsen, Y.-J. Han, P. P. Hopke, S.-M. Yi, P. Blanchard, J. J. Pagano, and M. Milligan (2007), Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS), Atmos. Environ., 41, 82058218.
  • Landis, M. S., R. K. Stevens, F. Schaedlich, and E. M. Prestbo (2002), Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air, Environ. Sci. Technol., 36, 30003009.
  • Laudal, D., and L. Levin (2006), Mercury Chemistry in Power Plant Plumes, Electric Power Research Institute (EPRI), Palo Alto, CA.
  • Lin, C.-J., and S. O. Pehkonen (1999), The chemistry of atmospheric mercury: A review, Atmos. Environ., 33, 20672079.
  • Lohman, K., C. Seigneur, E. Edgerton, and J. Jansen (2006), Modeling mercury in power plant plumes, Environ. Sci. Technol., 40, 38483854.
  • Lyman, S. N., D. A. Jaffe, and M. S. Gustin (2010), Release of mercury halides from KCl denuders in the presence of ozone, Atmos. Chem. Phys., 10, 81979204.
  • Lyng, R., K. Curtis, and L. Marshall (2005), Full-scale testing of mercury emissions at Ontario Power Generation's Nanticoke GS and the potential for mercury control, Air Quality V Conference, 18–21 September, 2005, Arlington, Virginia.
  • Ma, J., and S. M. Daggupaty (2000), Effective dry deposition velocities for gases and particles over heterogeneous terrain, J. Appl. Meteorol., 39, 13791390.
  • Mason, R., and K. Sullivan (1997), Mercury in Lake Michigan, Environ. Sci. Technol., 31, 942947.
  • Munthe, J., Z. F. Xiao, and O. Lindqvist (1991), The aqueous reduction of divalent mercury by sulphite, Water Air Soil Poll., 56, 621630.
  • National Pollution Release Inventory (NPRI) (2000), Facility data for Nanticoke GS, Imperial Oil refinery and U.S. Steel Works, NPRI, Environment Canada, [Available at http://www.ec.gc.ca/inrp-npri/].
  • Pacyna, E. G., J. M. Pacyna, F. Steenhuisen, and S. Wilson (2006), Global anthropogenic mercury emission inventory for 2000, Atmos. Environ., 40, 40484063.
  • Pehkonen, S. O., and C.-J. Lin (1998), Aqueous photochemistry of divalent mercury with organic acids, J. Air Waste Manag. Assoc., 48, 144150.
  • Pirrone, N., et al. (2010), Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 59515964.
  • Prestbo, E. M., and D. A. Gay (2009), Wet deposition of mercury in the U.S. and Canada 1996–2005: Results and analysis of the NADP mercury deposition network (MDN), Atmos. Environ., 43, 42234233.
  • Prestbo, E., J. Calhoun, R. Brunette, M. Palidini, and J. Sherwell (2000), Mercury speciation measurements in the fluegas and plume of two Maryland combustion sources: Montgomery County Resource Recovery Facility (RRF) and PEPCO Dickerson Generating Station (DGS). Maryland Power Plant Research Program, State of Maryland Department of Natural Resources, Annapolis, Maryland.
  • Prestbo, E., et al. (2005), Interconversion of emitted atmospheric mercury species in coal-fired power plant plumes, Air Quality V Conference, Arlington, Virginia, USA.
  • Rutter, A. P., and J. J. Schauer (2007a), The impact of aerosol composition on the particle to gas partitioning of reactive mercury, Environ. Sci. Technol., 41, 39343939.
  • Rutter, A. P., and J. J. Schauer (2007b), The effect of temperature on the gas-particle partitioning of reactive mercury in atmospheric aerosols, Atmos. Environ., 41, 86478657.
  • Ryaboshapko, A., A. Gusev, I. Ilyin, and O. Travnikov (2004), Modelling of atmospheric mercury transport, chemistry and deposition: Recent achievements and current problems, in Air Pollution Modelling and Its Application XVI, edited by C. Borrego, and S. Incecik, Kluwer Academic, New York, NY, pp. 255–269.
  • Sahota, H., P. Kiely, and M. Lusis (1985), Air quality impact of the Nanticoke industrial development, Water Air Soil Poll., 25, 249263.
  • Schwede, D. B., and J. O. Paumier (1997), Sensitivity of the industrial source complex model to input deposition parameters, J. Appl. Meteorol., 36, 10961106
  • Scott, S. L., H. Yusuf, N. Lahoutifard, and K. Maunder (2003), Homogeneous and heterogeneous reactions of atmospheric mercury(II) with sulfur(IV), J. Phys. IV France, 107, 12011204.
  • Seigneur, C., P. Karamchandani, K. Vijayaraghavan, R.-L. Shia, and L. Levin (2003), On the effect of spatial resolution on atmospheric mercury modeling, Sci. Total Environ., 304, 7381.
  • Seigneur, C., K. Vijayaraghavan, and K. Lohman (2006), Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions, J. Geophys. Res., 111, D22306, doi:10.1029/2005JD006780.
  • Sillman, S., F. J. Marsik, K. I. Al-Wali, G. J. Keeler, and M. S. Landis (2007), Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern United States and the Atlantic Ocean, J. Geophys. Res., 112, D23305, doi:10.1029/2006JD008227.
  • Slinn, W. G. N. (1977), Some approximations of the wet and dry removal of particles and gases from the atmosphere, Water Air Soil Poll., 7, 513543.
  • Steffen, A., et al. (2008), A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys., 8, 14451482.
  • Swartzendruber, P., D. Chand, D. A. Jaffe, J. Smith, D. Reidmiller, J. Gratz, S. Keeler, S. Strode, L. Jaeglé, and R. Talbot (2008), Vertical distribution of mercury, CO, ozone and aerosol scattering coefficient in the Pacific Northwest during the spring 2006 INTEX-B campaign, J. Geophys. Res., 113, D10305, doi:10.1029/2007JD009579.
  • Swartzendruber, P., D. A. Jaffe, and B. Finley (2009), Development and first results of an aircraft- based, high time resolution technique for gaseous elemental and reactive (oxidized) gaseous mercury, Environ. Sci. Technol., 43, 74847489.
  • United Nations Environment Programme (UNEP) (2008), The global atmospheric mercury assessment: Sources, emissions and transport. [Available at http://www.chem.unep.ch/mercury].
  • United States Environmental Protection Agency (U.S. EPA) (1998), Information Collection Request, U.S. EPA, Research Triangle Park, North Carolina.
  • Van Loon, L. L., E. A. Mader, and S. L. Scott (2001), Sulfite stabilization and reduction of the aqueous mercuric ion: Kinetic determination of sequential formation constants, J. Phys. Chem. A, 105, 31903195.
  • Wong, H. K. T., C. Banic, S. Robert, Z. Nejedly, and J. L. Campbell (2006), In-stack and in-plume characterization of particulate metals emitted from a copper smelter, Geochem. Explor. Environ. Anal., 6, 131137.
  • Zacharewksi, T. R., E. A. Cherniak, and W. H. Schroeder (1987), FTIR investigation of the heterogeneous reaction of HgO(S) with SO2(G) at ambient temperature, Atmos. Environ., 21, 23272332.
  • Zhang, L., S. Gong, J. Padro, and L. Barrie (2001), A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 49560
  • Zhang, L., J. Brook, and R. Vet (2003), A revised parameterization for gaseous dry deposition in air quality models, Atmos. Chem. Phys., 3, 20672082.