SEARCH

SEARCH BY CITATION

References

  • Armstrong, R. L., and M. J. Brodzik (2005), Northern hemisphere EASE-grid weekly snow cover and sea ice extent version 3 (Boulder, CO: National snow and ice data center, Digital Media), accessed May 2010 at http://nsidc.org/data/nsidc-0046. html.
  • Awaka, J., T. Iguchi, H. Kumagai, and K. I. Okamoto (1997), Rain type classification algorithm for TRMM precipitation radar, Geoscience and Remote Sensing, 1997. IGARSS'97. Remote Sensing-A Scientific Vision for Sustainable Development, vol. 4, pp. 16331635.
  • Battaglia, A., C. Kummerow, D. -B. Shin, and C. Williams (2003), Constraining microwave brightness temperatures by radar bright band observations, J. Atmos. Oceanic Technol., 20, 856871.
  • Bauer, P., J. P. V. Poiares Baptista, and M. de Iulis (1999), The effect of the melting layer on the microwave emission of clouds over the ocean, J. Atmos. Sci., 56, 852867.
  • Bauer, P., A. Khain, A. Pokrovsky, R. Meneghini, C. Kummerow, F. Marzano, and J. P. V. Poiares Baptista (2000), Combined cloud-microwave radiative transfer modeling of stratiform rainfall, J. Atmos. Sci., 57, 10821104.
  • Berg, W., T. L'Ecuyer, and J. M. Haynes (2010), The distribution of rainfall over oceans from spaceborne radars, J. Appl. Meteorol. Clim., 49, 535543.
  • Botta, G., K. Aydin, and J. Verlinde (2010), Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach, IEEE Geosci. and Remote Sens. Lett., 7, 572576.
  • Bréon, F. -M., and B. Dubrulle (2004), Horizontally oriented plates in clouds, J. Atmos. Sci., 61, 28882898.
  • Brown, S. T., and C. S. Ruf (2007), Validation and development of melting layer models using constraints by active/passive microwave observations of rain and the wind-roughened ocean surface, J. Atmos. Oceanic Technol., 24, 543563.
  • Chevallier, F., S. Di Michele, and A. P. Mc Nally, (2006), Diverse profile datasets from the ECMWF 91-level short-range forecasts, Technical report, NWP SAF satellite application facility for numerical weather prediction, Document no. NWPSAF-EC-TR-010, Version 1.0.
  • Cunningham, R. M. (1947), A different explanation of the bright line, J. Meteor., 4, 163.
  • Deschamps, P. -Y., F. -M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. -C. Buriez, and G. Seze (1994), The POLDER mission: Instrument characteristics and scientific objectives, IEEE Trans. Geosci. and Remote Sensing, 32, 598615.
  • Di Girolamo, P., B. B. Demoz, and D. N. Whiteman (2003), Model simulations of melting hydrometeors: A new bright band from melting frozen drops, Geophys. Res. Lett., 30(12), 1626, doi:10.1029/2002GL016825.
  • Dungey, C. E., and C. F. Bohren (1993), Backscattering by non-spherical hydrometeors as calculated by the coupled-dipole method: An application in radar meteorology, J. Atm. Oceanic Technol., 10, 526532.
  • Emde, C., S. A. Buehler, C. Davis, P. Eriksson, T. R. Sreerekha, and C. Teichmann (2004), A polarized discrete ordinate scattering model for simulations of limb and nadir longwave measurements in 1D/3D spherical atmospheres, J. Geophys. Res., 109, D24207, doi:10.1029/2004JD005140.
  • Eriksson, P., S. A. Buehler, C. P. Davis, C. Emde, and O. Lemke (2011), ARTS, the atmospheric radiative transfer simulator, Version 2, J. Quant. Spectrosc. Radiat. Transfer, 112, 15511558.
  • Fabry, F., and W. Szyrmer (1999), Modeling of the melting layer. Part II: Electromagnetic, J. Atmos. Sci., 56, 35933600.
  • Hanesch, M. (1999), Fall velocity and shape of snowflakes, Dissertation ETH No 13322, Swiss Federal Institute of Technology, Zurich.
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto (2000), Rain-profiling algorithm for the TRMM precipitation radar, J. Appl. Meteor., 39, 20382052.
  • Kollias, P., and B. Albrecht (2005), Why the melting layer radar reflectivity is not bright at 94 GHz, Geophys. Res. Lett., 32, L24818, doi:10.1029/2005GL024074.
  • Korolev, A., and G. Isaac (2003), Roundness and aspect ratio of particles in ice clouds, J. Atmos. Sci., 60, 17951808.
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson (1998), The tropical rainfall measuring mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809817.
  • Kummerow, C., et al. (2000), The status of the tropical rainfall measuring mission (TRMM) after two years in orbit, J. Appl. Meteor., 39, 19651982.
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng (2010), Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation, J. Atmos. Sci., 67, 34713487.
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang (2005), Dual-frequency radar ratio of nonspherical atmospheric hydrometeors, Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.
  • McFarquhar, G. M., and A. J. Heymsfield (1997), Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX, J. Atmos. Sci., 54, 21872200.
  • Meirold-Mautner, I., C. Prigent, E. Defer, J. R. Pardo, J. -P. Chaboureau, J. -P. Pinty, M. Mech, and S. Crewell (2006), Radiative transfer simulations using mesoscale cloud model outputs: Comparisons with passive microwave and infrared satellite observations for midlatitudes, J. Atmos. Sci., 64, 15501568.
  • Meneghini, R., and L. Liao (1996), Comparisons of cross sections for melting hydrometeors as derived from dielectric mixing formulas and a numerical method, J. Appl. Meteor., 35, 16581670.
  • Meneghini, R., and L. Liao (2000), Effective dielectric constants of mixed-phase hydrometeors, J. Atmos. Oceanic Technol., 17, 628640.
  • Mishchenko, M. I. (2000), Calculation of the amplitude matrix for a non-spherical particle in a fixed orientation, Appl. Opt., 39, 10261031.
  • Mitchell, D. L., R. Zhang, and R. L. Pitter (1990), Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates, J. Appl. Meteor., 29, 153163.
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher (1990), A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory of snowflakes, J. Atmos. Sci., 47, 584591.
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser (1999), The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature, J. Appl. Meteor., 38, 596606.
  • Noel, V., and H. Chepfer (2004), Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements, J. Atmos. Sci., 61, 20732081.
  • Liao, L., and R. Meneghini (2005), On modeling air/spaceborne radar returns in the melting layer, IEEE Trans. Geo. Remote Sens., 43, 27992809.
  • Liao, L., and R. Meneghini (2009), Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar, J. Appl. Meteor. Climatol., 48, 804817.
  • Locatelli, J. D., and P. V. Hobbs (1974), Fall speeds and masses of solid precipitation particles, J. Geophys. Res., 79 (15), 21852197, doi:10.1029/JC079i015p02185.
  • Olson, W. S., P. Bauer, N. F. Viltard, D. E. Johnson, W. -K. Tao, R. Meneghini, and L. Liao (2001a), A melting-layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations, J. Appl. Meteor., 40, 11451163.
  • Olson, W. S., P. Bauer, C. D. Kummerow, Y. Hong, and W. K. Tao (2001b), A melting-layer model for passive/active microwave remote sensing applications. Part II: Simulation of TRMM observations, J. Appl. Meteorol., 40, 11641179.
  • Prigent, C., J. R. Pardo, M. I. Mishchenko, and W. B. Rossow (2001), Microwave polarized scattering signatures in clouds: SSM/I observations interpreted with radiative transfer simulations, J. Geophys. Res, 106, 28,24328,258.
  • Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J. -P. Pinty (2005), Relations of polarized scattering signatures observed by TRMM microwave instrument with electrical processes in cloud systems, Geophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.
  • Sassen, K., S. Matrosov, and J. Campbell (2007), CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog, Geophys. Res. Lett., 34, L16818, doi:10.1029/2007GL030291.
  • Schols, J. L., J. A. Weinman, G. D. Alexander, R. E. Stewart, L. J. Angus, and A. C. L. Lee (1999), Microwave properties of frozen precipitation around a North Atlantic Cyclone, J. Appl. Meteor., 38, 2943.
  • Sekhon, R. S., and R. C. Srivastava (1970), Snow size spectra and radar reflectivity, J. Atmos. Sci., 27, 299307.
  • Schumacher, C., and R. A. Houze Jr. (2000), Comparison of radar data from the TRMM satellite and Kwajalein Oceanic validation site, J. Appl. Meteorol., 39, 21512164.
  • Surussavadee, C., and D. H. Staelin (2006), Comparison of AMSU millimeter-wave satellite observations, MM5/TBSCAT predicted radiances, and electromagnetic models for hydrometeors, IEEE Trans. Geo. Remote Sens., 44, 26672678.
  • Willis, P. T., and A. J. Heymsfield (1989), Structure of the melting layer in mesoscale convective system stratiform precipitation, J. Atmos. Sci., 46, 20082025.
  • Xie, X., U. Lhnert, S. Kneifel, and S. Crewell (2012), Snow particle orientation observed by ground-based microwave radiometry, J. Geophys. Res., 117, D02206, doi:10.1029/2011JD016369.
  • Xie, X., and J. Miao (2011), Polarization difference due to nonrandomly oriented ice particles at millimeter/submillimeter waveband, J. Quant. Spectrosc. Ra., 112, 10901098.
  • Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry (2005), Modeling of the melting layer. Part III: The density effect, J. Atmos. Sci., 62, 37053723.