SEARCH

SEARCH BY CITATION

References

  • Cai, W., M. A. Collier, P. D. Durack, H. B. Gordon, A. C. Hirst, S. P. O'Farrell, and P. H. Whetton (2003), The response of climate variability and mean state to climate change: Preliminary results from the CSIRO Mark 3 coupled model, CLIVAR Exchanges, 28, 811.
  • Cavicchia, L. (2013), A long-term climatology of medicanes. PhD Thesis, 121 pp. (Available from Ca' Foscari University of Venice).
  • Cubasch, U., R. Voss, G. Hegerl, J. Waskiewitz, and T. Crowley (1997), Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model, Clim. Dynam., 13, 757767.
  • Emanuel, K. (1986), An air-sea interaction theory of tropical cyclones. Part I: Steady-state maintenance, J. Atmos. Sci., 43, 585604.
  • Emanuel, K. (1987), The dependence of hurricane intensity on climate, Nature, 326, 483485.
  • Emanuel, K. (1995), The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium, J. Atmos. Sci., 52, 39593968.
  • Emanuel, K. (2005a), Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686688.
  • Emanuel, K. (2005b), Genesis and maintenance of Mediterranean hurricanes, Adv. Geosc. 2, 217220.
  • Emanuel, K. (2006), Climate and tropical cyclone activity: A new model downscaling approach, J. Climate, 19, 47974802.
  • Emanuel, K., and D. Nolan (2004), Tropical cyclone activity and the global climate system, paper presented at 26th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami, Fla, 240–241.
  • Emanuel, K., S. Ravela, E. Vivant, and C. A. Risi (2006), Statistical-deterministic approach to hurricane risk assessment, Bull. Amer. Meteor. Soc., 87, 299314.
  • Emanuel, K., R. Sundararajan, and J. Williams (2008), Hurricanes and global warming: Results from downscaling IPCC AR4 simulations, Bull. Amer. Meteor. Soc., 89, 347367.
  • Ernst, J. A., and M. A. Matson (1983), Mediterranean tropical storm?, Weather, 38, 332337.
  • Fita, L., R. Romero, A. Luque, K. Emanuel, and C. Ramis (2007), Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model, Nat. Hazards Earth Syst. Sci., 7, 116.
  • Frei, C., and C. Schär (2001), Detection of probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region, J. Clim., 14, 15681584.
  • Gaertner, M. A., D. Jacob, V. Gil, M. Domínguez, E. Padorno, E. Sánchez, and M. Castro (2007), Tropical cyclones over the Mediterranean Sea in climate change simulations, Geophys. Res. Lett., 34, L14711, doi:10.1029/2007GL029977.
  • Hasumi, H., and S. Emori (Eds.) (2004), K-1 Coupled GCM (MIROC) Description K-1 Tech. Rep., 1, pp. 34, Cent. for Clim. Syst. Res., Univ of Tokyo, Tokyo.
  • Henderson-Sellers, A., et al. (1998), Tropical cyclones and global climate change: A post-IPCC assessment, Bull. Amer. Meteor. Soc., 79, 938.
  • Homar, V., R. Romero, D. J. Stensrud, C. Ramis, and S. Alonso (2003), Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors, Quart. J. R. Meteorol. Soc., 129, 14691490.
  • IPCC (2000), Special Report on Emissions Scenarios, edited by N. Nakicenovic and R. Swart, Cambridge Univ. Press, Cambridge (UK), pp. 570.
  • Klein Tank, A. M. G., and G. P. Können (2003), Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999, J. Clim., 16, 36653680.
  • Knutson, T., and R. Tuleya (2004), Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization, J. Climate, 17, 34773495.
  • Lagouvardos, K., V. Kotroni, S. Nickovic, D. Jovic, and G. Kallos (1999), Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean, Meteorol. Appl., 6, 371383.
  • Lighthill, J., G. Holland, W. M. Gray, C. Landsea, G. Craig, J. Evans, Y. Kurihara, and C. P. Guard (1994), Global climate change and tropical cyclones, Bull. Amer. Meteor. Soc., 75, 21472157.
  • Manabe, S., J. Stouffer, M. J. Spelman, and K. Bryan (1991), Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Mean annual response, J. Clim., 4, 785818.
  • Marks, D. G. (1992), The Beta and Advection Model for Hurricane Track Forecasting, NOAA Tech. Memo. NWS NMC 70, pp. 89, National Oceanic and Atmospheric Administration (NOAA), Washington DC.
  • Moscatello, A., M. M. Miglieta, and R. Rotunno (2008), Observational analysis of a Mediterranean ‘hurricane’ over south-eastern Italy, Weather, 63, 306311.
  • Rasmussen, E., and C. Zick (1987), A subsynoptic vortex over the Mediterranean sea with some resemblance to polar lows, Tellus, 39, 408425.
  • Reale, O., and R. Atlas (2001), Tropical cyclone-like vortices in the extratropics: Observational evidence and synoptic analysis, Weather Forecast., 16, 734.
  • Royer, J. F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal (1998), A GCM study of impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones, Climate Dyn., 38, 307343.
  • Sugi, M., A. Noda, and N. Sato (2002), Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model, J. Meteor. Soc. Japan, 80, 249272.
  • Tous, M., and R. Romero (2012), Meteorological environments associated with medicane development, Int. J. Climatol., doi:10.1002/joc.3428.
  • Tous, M., R. Romero, and C. Ramis (2012), Surface heat fluxes influence on medicane trajectories and intensification, Atmos. Res., doi:10.1016/j.atmosres.2012.05.022.
  • Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131, 29613012, doi:10.1256/qj.04.176.
  • Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang (2005), Changes in tropical cyclone number, duration and intensity in a warming environment, Science, 309, 18441846.