SEARCH

SEARCH BY CITATION

References

  • Ackerman, S. A. (1996), Global satellite observations of negative brightness temperature differences between 11 and 6.7 µm, J. Atmos. Sci., 53, 28032812.
  • Adler, R. F., and D. D. Fenn (1979), Thunderstorm intensity as determined from satellite data, J. Appl. Meteor., 18, 502517.
  • Adler, R. F., and D. D. Fenn (1981), Satellite-observed cloud top height changes in tornadic thunderstorms, J. Appl. Meteorol., 20, 13691375.
  • Adler, R. F., M. J. Markus, and D. D. Fenn (1985), Detection of severe Midwest thunderstorms using geosynchronous satellite data, Mon. Weather Rev., 113, 769781.
  • Arnault, J., and F. Roux (2009), Case study of a developing African easterly wave during NAMMA: An energetic point of view, J. Atmos. Sci., 66, 29913020.
  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase, J. Geophys. Res., 105(D9), 11,78111,792, doi:10.1029/1999JD901090.
  • Blumenthal, R. (2005), Lightning fatalities on the South African Highveld: A retrospective descriptive study for the period 1997–2000, Am. J. Forensic Med. Pathol., 26, 5966.
  • Blumenthal, R., E. Trengrove, I. R. Jandrell, and G. Saayman (2012), Lightning medicine in South Africa, S. Afr. Med. J., 102, 625626.
  • Cecil, D. J., and E. J. Zipser (2002), Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations, Mon. Weather Rev., 130, 785801.
  • Chronis, T. G., and N. A. Anagnostou (2006), Evaluation of a long-range lightning detection network with receivers in Europe and Africa, IEEE Trans. Geosci. Remote Sens., 44(6), 15041510.
  • Cifelli, R., T. Lang, S. A. Rutledge, N. Guy, E. J. Zipser, J. Zawislak, and R. Holzworth (2010), Characteristics of an African easterly wave observed during NAMMA, J. Atmos. Sci., 67, 325.
  • Curran, E. B., R. L. Holle, and R. E. Lopez (1997), Lightning fatalities, injuries, and damage reports in the United States from 1959–1994, NOAA Technol. Memo., NWS SR-193.
  • Curran, E. B., R. L. Holle, and R. E. Lopez (2000), Lightning casualties in the United States from 1959 to 1994, J. Clim., 13, 34483453.
  • De Leonibus, L., D. Biron, C. Giorgi, A. Mäkelä, T. Tuomi, P. Pylkkö, and J. Haapalainen (2007), Study on the present status and future capabilities of ground-based lightning location networks, Rep. EUM/CO/06/1584/KJG, EUMETSAT, Darmstadt, Germany.
  • Deierling, W., and W. A. Petersen (2008), Total lightning activity as an indicator of updraft characteristics, J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.
  • Emersic, C., and C. P. R. Saunders (2010), Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification, Atmos. Res., 98, 327340.
  • EUMETSAT (2007), Typical radiometric accuracy and noise for MSG–1/2, Rep. EUM/OPS/TEN/07/0314, 4 pp., Darmstadt, Germany.
  • Ferreira, R. N., T. Rickenbach, N. Guy, and E. Williams (2009), Radar observations of convective system variability in relationship to African easterly waves during the 2006 AMMA special observing period, Mon. Weather Rev., 137, 41364150.
  • Gaffard, C., J. Nash, N. Atkinson, A. Bennett, G. Callaghan, E. Hibbett, P. Taylor, M. Turp, and W. Schulz (2008), Observing lightning around the globe from the surface, paper presented at 20th International Lightning Detection Conference, ILDC/ILMC, Tucson, Ariz., 21-25 April.
  • Haklander, A. J., and A. Van Delden (2003), Thunderstorm predictors and their forecast skill for the Netherlands, Atmos. Res., 67–68, 273299.
  • Harris, R. J., J. R. Mecikalski, W. M. MacKenzie Jr., P. A. Durkee, and K. E. Nielsen (2010), The definition of GOES infrared lightning initiation interest fields, J. Appl. Meteorol. Climatol., 49, 25272543.
  • Heitkemper, L., R. F. Price, and D. B. Johnson (2008), Lightning-warning systems for use by airports, Airport Coop. Res. Program Rep., 8, 81 pp., Transp. Res. Board, Washington, D. C.
  • Hill, J. (1991), Weather From Above: America's Meteorological Satellites, 89 pp., Washington, Smithsonian Inst. Press.
  • Holle, R. L. (2008), Annual rates of lightning fatalities by country, paper presented at 20th International Lightning Detection Conference, ILDC/ILMC, Tucson, Ariz, 21-25 April.
  • Holle, R. L., R. E. Lopez, and B. C. Navarro (2005), Deaths, injuries, and damages from lightning in the United States in the 1890 s in comparison with the 1990s, J. Appl. Meteorol., 44, 15631573.
  • Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements, J. Geophys. Res., 110, D05205, doi:10.1029/2004JD004949.
  • Jenkins, G. S., and A. S. Pratt (2008), Saharan dust, lightning and tropical cyclones in the eastern tropical Atlantic during NAMMA-06, Geophys. Res. Lett., 35, L12804, doi:10.1029/2008GL033979.
  • Keighton, S. J., H. B. Bluestein, and D. R. MacGorman (1991), The evolution of a severe mesoscale convective system: Cloud-to-ground lightning location and storm structure, Mon. Weather Rev., 119, 15331556.
  • Keogh, S., E. Hibbett, J. Nash, and J. Eyre (2006), The Met Office arrival time difference (ATD) system for thunderstorm detection and lightning location, Numer. Weather Predict. Forecast. Res. Technol. Rep., 488, Met Off., Exeter, U. K.
  • Lazzara, M. A., J. M. Benson, R. J. Fox, D. J. Laitsch, J. P. Rueden, D. A. Santek, D. M. Wade, T. M. Whittaker, and J. T. Young (1999), The Man computer Interactive Data Access System: 25 years of interactive processing, Bull. Am. Meteorol. Soc., 80, 271284.
  • Lee, A. C. L. (1986), An operational system for the remote location of lightning flashes using a VLF arrival time difference technique, J. Atmos. Oceanic Technol., 3, 630642.
  • Lee, A. C. L. (1990), Bias elimination and scatter in lightning location by the VLF arrival time difference technique, J. Atmos. Oceanic Technol., 7, 719733.
  • Lee, T. F., F. J. Turk, and K. Richardson (1997), Stratus and fog products using GOES-8-9 3.9 µm data, Weather Forecasting, 12, 664677.
  • Lensky I. M., and D. Rosenfeld (2006), The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius, Atmos. Chem. Phys., 6, 28872894.
  • Lindsey, D. T., D. W. Hillger, L. Grasso, J. A. Knaff, and J. F. Dostalek (2006), Goes climatology and analysis of thunderstorms with enhanced 3.9-µm reflectivity, Mon. Weather Rev., 134, 23422353.
  • Lopez, R. E., and R. L. Holle (1996), Fluctuations of lightning casualties in the United States: 1959–1990, J. Clim., 9, 608615.
  • Lopez, R. E., and R. L. Holle (1998), Changes in the number of lightning deaths in the United States during the twentieth century, J. Clim., 11, 20702077.
  • Mazany, R. A., S. Businger, S. I. Gutman, and W. Roeder (2002), A Lightning prediction index that utilizes GPS integrated precipitable water vapor, Weather Forecasting, 17, 10341047.
  • McCann, D. W. (1983), The enhanced-V: A satellite observable severe storm signature, Mon. Weather Rev., 111, 887894.
  • McGill, R., J. W. Tukey, and W. Larsen (1978), Variations of box plots, Am. Stat., 32, 1216.
  • Mecikalski, J. R., and K. M. Bedka (2006), Forecast. convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery, Mon. Weather Rev., 134, 4978.
  • Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten (2008), A statistical evaluation of GOES cloud top properties for nowcasting convective initiation, Mon. Weather Rev., 136, 48991914.
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. König, and S. Muller (2010a), Cloud top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields, J. Appl. Meteorol. Climatol., 49, 521534.
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. König, and S. Muller (2010b), Cloud top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part II: Use of visible reflectance, J. Appl. Meteorol. Climatol., 49, 25442558.
  • Mecikalski, J. R., P. D. Watts, and M. König (2011), Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds, Atmos. Res., 102, 175190.
  • Mitzeva, R. P., C. P. R. Saunders, and B. Tsenova (2005), A modeling study of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification, Atmos. Res., 76, 206221.
  • Nakajima, T., and M. D. King (1990), Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. I: Theory, J. Atmos. Sci., 47, 18781893.
  • Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H.–L. Huang (2009), Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations, J. Appl. Meteorol. Climatol., 48, 16131626.
  • Pessi, A. T., and S. Businger (2009), Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean, J. Appl. Meteorol. Climatol., 48, 833848.
  • Petersen, W. A., and S. A. Rutledge (1998), On the relationship between cloud-to-ground lightning and convective rainfall, J. Geophys. Res., 103(D12), 14,02514,040, doi:10.1029/97JD02064.
  • Platnick, S. (2000), Vertical photon transport in cloud remote sensing problems, J. Geophys. Res., 105(D18), 22,91922,935, doi:10.1029/2000JD900333.
  • Purdom, J. F. W. (1976), Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior, Mon. Weather Rev., 104, 14741483.
  • Purdom, J. F. W. (1986), The development and evolution of deep convection, in Satellite Imagery Interpretation for Forecasters, vol. 2, Precipitation Convection, edited by P. S. Parke, pp., 4-a-14-a-8, Natl. Weather Assoc., Temple Hills, Md. [Available from the NWA, 4400 Stamp Road, No. 404, Temple Hills, MD, 20748.].
  • Reale, O., W. K. Lau, K.–M. Kim, and E. Brin (2009), Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system, J. Atmos. Sci., 66, 35633578.
  • Redelsperger, J.–L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher (2006), African monsoon multidisciplinary analysis: An international research project and field campaign, Bull. Am. Meteorol. Soc., 87, 17391746.
  • Roberts, R. D., and S. Rutledge (2003), Nowcasting storm initiation and growth using GOES-8 and WSR-88D data, Weather Forecasting, 18, 562584.
  • Rodger, C. J., J. B. Brundell, R. L. Dowden, and N. R. Thomson (2004), Location accuracy of long distance VLF lightning location network, Ann. Geophys., 22, 747758.
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. Lindsey (2008), Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase, J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600.
  • Ross, R. S., and T. N. Krishnamurti (2009), Energy transformation and diabatic processes in developing and non-developing African easterly waves observed during the NAMMA project of 2006, Weather Forecasting, 24, 15241548.
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg (1997), Monitoring deep convection and convective overshooting with METEOSAT, Adv. Space Res., 19, 433441.
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier (2002), An Introduction to Meteosat Second Generation (MSG), Bull. Am. Meteorol. Soc., 84, 977992.
  • Schröder, M., M. König, and J. Schmetz (2009), Deep convection observed by the Spinning Enhanced Visible and Infrared Imager on board Meteosat 8: Spatial distribution and temporal evolution over Africa in summer and winter 2006, J. Geophys. Res., 114, D05109, doi:10.1029/2008JD010653.
  • Setvák, M., and C. A. Doswell III (1991), The AVHRR channel 3 cloud top reflectivity of convective storms, Mon. Weather Rev., 119, 841847.
  • Setvák, M., R. M. Rabin, C. A. Doswell III, and V. Levizzani (2003), Satellite observations of convective storm top features in the 1.6 and 3.7/3.9 µm spectral bands, Atmos. Res., 67–68C, 589605.
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel (1994), Cloud properties inferred from 8–12 µm data, J. Appl. Meteorol., 33, 212229.
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt (2002), Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics, Mon. Weather Rev., 130, 802824.
  • Van Olst, M. D. A. (1990), Minimising lightning fatalities: Lightning earth currents in Zimbabwe, paper presented at First All-Africa Symposium on Lightning, April 30 - May 4, paper 24/34/D, Harare, Zimbabwe.
  • Vivekanandan, J., J. Turk, and V. N. Bringi (1991), Ice water path estimation and characterization using passive microwave radiometry, J. Appl. Meteorol., 30, 14071421.
  • Walker, J. R., W. M. MacKenzie, J. R. Mecikalski, and C. P. Jewett (2012), An enhanced geostationary satellite-based convective initiation algorithm for 0–2-h nowcasting with object tracking, J. Appl. Meteorol. Climatol., 51, 19311949.
  • Wang, K.–Y., and S.–A. Liao (2006), Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2–4 July 2004 severe convective system over Taiwan area, J. Geophys. Res., 111, D05206, doi:10.1029/2005JD006411.
  • Wilks, D. S. (2006), Statistical Methods in the Atmospheric Sciences, 2nd ed., 627 pp., Academic, Oxford, U. K.
  • Williams, E. R., S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach (1992), A radar and electrical study of tropical “hot towers”, J. Atmos. Sci., 49, 13861395.
  • Workman, E. J., and S. E. Reynolds (1949), Electrical activity as related to thunderstorm cell growth, Bull. Am. Meteorol. Soc., 30, 142149.
  • World Meteorological Society (2006), UK Met Office long range lightning detection network summary, Rep. CIMO-XIV/INF.4, Geneva, Switzerland.
  • Zawislak, J., and E. J. Zipser (2010), Observations of 7 African easterly waves in the east Atlantic during 2006, J. Atmos. Sci., 67, 2643.
  • Zipser, E. J., et al. (2009), The Saharan air layer and the fate of African easterly waves, Bull. Am. Meteorol. Soc., 89, 11371156.