SEARCH

SEARCH BY CITATION

References

  • Battan, L. J. (1973), Radar Observations of the Atmosphere, 324 pp., Univ. of Chicago Press, Chicago, USA.
  • Berne, A., and R. Uijlenhoet (2005), A stochastic model of range profiles of raindrop size distributions: Application to radar attenuation correction, Geophys. Res. Lett., 32, L10803, doi:10.1029/2004GL021899
  • Berne, A., J. Jaffrain, and M. Schleiss (2012), Scaling analysis of the variability of the rain drop size distribution at small scale, Adv. Water Resour., 45(9), 212, doi:10.1016/j.advwatres.2011.12.016, 2012.
  • Campos, E., and I. Zawadzki (2000), Instrumental uncertainties in Z–R relations, J. Appl. Meteorol., 39, 10881102.
  • Chapon, B., G. Delrieu, M. Gosset, and B. Boudevillain (2007), Variability of rain drop size distribution and its effect on the Z–R relationship: A case study for intense Mediterranean rainfall, Atmos. Res., 87, 5265, doi:10.1016/j.atmosres.2007.07.003.
  • Ciach, G. J., and W. F. Krajewski (1999), Radar–rain gauge comparisons under observational uncertainties, J. Appl. Meteorol., 38, 15191525.
  • Corrsin, S. (1951), On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys., 22, 469473.
  • Delahaye, J.-Y., L. Barthès, P. Golé, J. Lavergnat, and J. P. Vinson (2006), A dual-beam spectropluviometer concept, J. Hydrol., 328, 110120.
  • Dubrulle, B. (1994), Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance, Phys. Rev. Lett., 73, 959962.
  • Fabry, F. (1996), On the determination of scale ranges for precipitation fields, J. Geophys. Res., 101(D8), 12,81912,826.
  • Fraedrich, K., and C. Larnder (1993), Scaling regimes of composite rainfall time series, Tellus, 45, 289298.
  • Gires, A., I. Tchiguirinskaia, D. Schertzer, and S. Lovejoy (2012), Influence of the zero-rainfall on the assessment of the multifractal parameters, Adv. Wat. Resour., 45, 1325.
  • Illingworth, A. J., and T. M. Blackman (2002), The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations, J. Appl. Meteorol., 41, 286297.
  • Jaffrain, J., and A. Berne (2012), Influence of the subgrid variability of the raindrop size distribution on radar rainfall estimators, J. Appl. Meteorol. Climatol., 51, 780785.
  • Joss, J., and A. Waldvogel (1967), Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung, Pure Appl. Geophys., 68, 240246.
  • Kolmogorov, A. N. (1941), Local structure of turbulence in an incompressible liquid for very large Reynolds numbers, Proc. Acad. Sci. URSS, Geochem. Sect., 30, 299303.
  • Lee, G. W., and I. Zawadzki (2005), Variability of drop size distribution: Time-scale dependence of the variability and its effects on rain estimation, J. Appl. Meteorol., 44, 241255.
  • Lee, G., I. Zawadzki, W. Szyrmer, D. Sempere Torres, and R. Uijlenhoet (2004), A general approach to double-moment normalization of drop size distributions, J. Appl. Meteorol., 43(2), 264281.
  • Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quart. Appl. Math., 2, p. 164168.
  • de Lima, M. I. P., and J. Grasman (1999), Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal, J. Hydrol., 220, 111.
  • Lovejoy, S., and D. Schertzer (1995), Multifractals and rain, in New Uncertainty Concepts in Hydrology and Hydrological Modelling, edited by A. W. Kundzewicz, pp. 62103, Cambridge Univ. press, Cambridge, UK.
  • Lovejoy, S., and D. Schertzer (2007), Scale, scaling and multifractals in geophysics: Twenty years on, in Nonlinear Dynamics in Geosciences, edited by A. Tsonis and J. Ellsner, pp. 311337, Springer, New York, USA, doi:10.1007/978-0-387-34918-3_18.
  • Lovejoy, S., and D. Schertzer (2008), Turbulence, rain drops and the l 1/2 number density law, New J. Phys., 10, 075,017, doi:10.1088/1367-2630/10/7/075017.
  • Lovejoy, S., and D. Schertzer (2010), Towards a new synthesis for atmospheric dynamics: Space-time cascades, Atmos. Res., 96, 152.
  • Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, 496 pp., Cambridge Univ. Press, Cambridge, UK.
  • Lovejoy, S., D. Schertzer, and V. Allaire (2008), The remarkable wide range scaling of TRMM precipitation, Atmos. Res., 90(1), 1032, doi:10.1016/j.atmosres.2008.02.016.
  • Lovejoy, S., J. Pinel, and D. Schertzer (2012), The global space-time cascade structure of precipitation: Satellites, gridded gauges and reanalyses, Adv. Water Resour., 45, 3750, doi:10.1016/j.advwatres.2012.03.024.
  • Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM J, Appl. Math, 11, 43144.
  • de Montera, L., L. Barthès, C. Mallet, and P. Golé (2009), The effect of rain- no rain intermittency on the estimation of the universal multifractals model parameters, J. Hydrometeorol., 10, 493506.
  • Morin, E., W. F. Krajewski, D. C. Goodrich, X. Gao, and S. Sorooshian (2003), Estimating rainfall intensities from weather radar data: The scale-dependency problem, J. Hydrometeorol., 4, 782797.
  • Novikov, E. A., and R. Stewart (1964), Intermittency of turbulence and spectrum of fluctuations in energy-disspation, Izv. Akad. Nauk. SSSR. Ser. Geofiz., 3, 408412.
  • Obukhov, A. M. (1949), Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk S.S.S.R, Ser. Geograf. Geofiz., 13, 5869.
  • Pathirana, A., S. Herath, and T. Yamada (2003), Estimating rainfall distributions at high temporal resolutions using a multifractal model, Hydrol. Earth Syst. Sci., 7, 668679.
  • Rosenfeld, D., and C. W. Ulbrich (2003), Cloud microphysical properties, processes, and rainfall estimation opportunities, Meteorol. Monogr., 30, 237.
  • Rysman, J. F., S. Verrier, Y. Lemaître, and E. Moreau (2013), Space time variability of the rainfall over the western Mediterranean region: A statistical analysis, submitted to J. Geophys. Res. Atmos., (in revision).
  • Sachidananda, M., and D. S. Zrnic (1987), Rain rate estimates from differential polarization measurements, J. Atmos. Oceanic Technol., 4, 588598.
  • Schertzer, D., and S. Lovejoy (1987), Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades, J. Geophys. Res., 92(D8), 96929714.
  • Schertzer, D., and S. Lovejoy (1997), Universal multifractals do exist!, J. Appl. Meteorol., 36, 12961303.
  • Schertzer, D., S. Lovejoy, and P. Hubert (2002), An introduction to stochastic multifractal fields, in Mathematical Problems in Environmental Science and Engineering, Ser. in Contemporary Appl. Math., vol. 4, edited by A. Ern, and L. Weiping, pp. 106179, Higher Educ. Press, Beijing.
  • Sekhon, R. S., and R. C. Srivastava (1970), Snow size spectra and radar reflectivity, J. Atmos. Sci., 27, 299307.
  • Sempere Torres, D., J. M. Porra, and J. D. Creutin (1994), A general formulation for raindrop size distribution, J. Appl. Meteorol., 33(12), 14941502.
  • Sempere Torres, D., J. M. Porra, and J. D. Creutin (1998), Experimental evidence of a general description for raindrop size distribution properties, J. Geophys. Res., 103(D2), 17851797.
  • She, Z. S., and E. Levêque (1994), Universal scaling laws in fully developed turbulence, Phys. Rev. Lett., 72, 336339.
  • Smith, J. A., and W. F. Krajewski (1993), A modeling study of rainfall rate–reflectivity relationships, Water Resour. Res., 29(8), 25052514.
  • Steiner, M., and J. A. Smith (2004), Scale dependence of radar-rainfall rates—An assessment based on raindrop spectra, J. Hydrometorol., 5, 11711180.
  • Tessier, Y., S. Lovejoy, and D. Schertzer (1993), Universal multifractals in rain and clouds: Theory and observations, J. Appl. Meteorol., 32, 223250.
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni (2000), The rain profiling algorithm applied to polarimetric weather radar, J. Atmos. Oceanic Technol., 17, 332356.
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou (2001), The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing, J. Appl. Meteorol., 40(6), 11181140.
  • Uijlenhoet, R. (2001), Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology, Hydrol. Earth Syst. Sci., 5(4), 615627.
  • Uijlenhoet, R., M. Steiner, and J. A. Smith (2003), Variability or raindrop size distribution in a squall line and implication for radar rainfall estimation, J. Hydrometeorol., 4, 4361.
  • Verrier, S., L. de Montera, L. Barthès, and C. Mallet (2010), Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem, J. Hydrol., 389, 111120.
  • Verrier, S., C. Mallet, and L. Barthès (2011), Multiscaling properties of rain in the time domain, taking into account rain support biases, J. Geophys. Res., 116, D20119, doi:10.1029/2011JD015719.
  • Yaglom, A. M. (1966), The influence of the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval, Sov. Phys. Dokl., 2, 2630.
  • Yu, N. (2012), Précipitations méditerranéennes intenses – Characterisation microphysique et dynamique dans l'atmosphère et impacts au sol, thèse Université Joseph Fourier, Grenoble, France, Laboratoire d'Etude des Transferts en Hydrologie et Environnement, Grenoble, France.