SEARCH

SEARCH BY CITATION

References

  • Black, T. L. (1994), The new NMC mesoscale Eta Model: Description and forecast examples, Wea. Forecasting, 9, 265278.
  • Buckley, R. L. (2004), Statistical comparison of Regional Atmospheric Modelling System forecasts with observations, Meteorol. Appl., 11, 6782.
  • Conil, S., and A. Hall (2006), Local regimes of atmospheric variability: A case study of southern California, J. Clim., 19, 43084325.
  • Cotton, W. R., et al. (2003), RAMS 2001: Current status and future directions, Meteorol. Z., 82, 529.
  • Cox, R., B. L. Bauer, and T. Smith (1998), A mesoscale model intercomparison, Bull. Am. Meteorol. Soc., 79, 265283.
  • Darby, L. S. (2005), Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone, J. Appl. Meteorol., 44, 17881806.
  • Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarter. J. R. Meteorolog. Soc., 137, 553597.
  • DeGaetano, A. T. (1996), Delineation of mesoscale climate zones in the northeastern United States using a novel approach to cluster analysis, J. Clim., 9, 17651782.
  • Fiebrich, C. A., C. R. Morgan, and A. G. McCombs (2010), Quality assurance procedures for mesoscale meteorological data, J. Atmos. Oceanic Technol., 27, 15651582.
  • Garcia-Bustamante, E., J. F. Gonzalez-Rouco, P. A. Jimenez, J. Navarro, and J. P. Montavez (2008), The influence of the Weibull assumption in monthly wind energy estimation, Wind Energy, 11, 483502.
  • Garcia-Bustamante, E., J. F. Gonzalez-Rouco, P. A. Jimenez, J. Navarro, and J. P. Montavez (2009), A comparison of methodologies for monthly wind energy estimations, Wind Energy, 12, 640659.
  • Gillette, D. A., and K. J. Hanson (1989), Spatial and temporal variability of dust production caused by wind erosion in the United States, J. Geophys. Res., 94(D2), 21972206.
  • Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 1 STR.
  • Hanna, S. R., and R. Yang (2001), Evaluations of mesoscale models' simulations of near-surface winds, temperature gradients and mixing depths, J. Appl. Meteorol., 40, 10951104.
  • Jimenez, P. A., and J. Dudhia (2012), Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model, J. Appl. Meteor. & Climatol., 51, 300316.
  • Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante (2012), A revised scheme for the WRF surface layer formulation, Mon. Wea. Rev., 140, 898918.
  • Jimenez, P. A., J. F. Gonzalez-Rouco, J. P. Montávez, J. Navarro, E. García-Bustamante, and J. Dudhia (2013), Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation, Clim. Dyn., 40, 16431656, doi:10.1007/s00382–012–1326–z.
  • Jiménez, P. A., J. F. González-Rouco, E. García-Bustamante, J. Navarro, J. P. Montávez, J. Vilà-Guerau de Arellano, J. Dudhia, and A. Roldán (2010a), Surface wind regionalization over complex terrain: Evaluation and analysis of a high resolution WRF numerical simulation, J. Appl. Meteor. & Climatol., 49, 268287.
  • Jiménez, P. A., J. F. González-Rouco, J. P. Montávez, E. García-Bustamante, and J. Navarro (2009), Climatology of wind patterns in the northeast of the Iberian Peninsula, Int. J. Climatol., 29, 501525.
  • Jiménez, P. A., J. F. González-Rouco, J. P. Montávez, J. Navarro, E. García-Bustamante, and F. Valero (2008), Surface wind regionalization in complex terrain, J. Appl. Meteor. & Climatol., 47, 308325.
  • Jiménez, P. A., J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante (2010b), Quality assurance of surface wind observations from automated weather stations, J. Atmos. Oceanic Technol., 27, 11011122.
  • Kaufmann, P., and C. D. Whiteman (1999), Cluster-analysis classification of wintertime wind patterns in the Grand Canyon region, J. Appl. Meteor., 38, 11311147.
  • McVicar, T. R., et al. (2012), Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, J. Hydrology., 416–417, 182205.
  • Mesinger, F., et al. (2006), North American regional reanalysis, Bull. of the Amer. Met. Soc., 87, 343360.
  • Mesinger, F., R. L. Wobus, and M. E. Baldwin (1996), Parameterization of form drag in the Eta Model at the National Centers for Environmental Prediction, in Preprints, 11th Conf. on Numerical Weather Prediction, Amer. Met. Soc., Norfolk, VA, 324326.
  • Miao, J.-F., D. Chen, K. Wyser, K. Borne, J. Lindgren, M. K. S. Strandevall, S. Thorsson, C. Achberger, and E. Almkvist (2008), Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations, Meteor. Atmos. Phys., 99, 77103.
  • Oreskes, N. (1998), Evaluation (not validation) of quantitative models, Environ Health Perspect., 106, 14531459.
  • Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641646.
  • Palutikof, J. P., P. M. Kelly, T. D. Davies, and J. A. Halliday (1987), Impacts of spatial and temporal wind speed variability on wind energy output, J. Appl. Meteor., 26, 11241133.
  • Pielke, R. A. (2002), Mesoscale Meteorological Modeling, 676 pp, Academic Press, San Diego, CA.
  • Pryor, S. C., R. J. Barthelmie, and E. Kjellström (2005), Potential climate change impact on wind energy resources in northern Europe: Analyses using a regional climate model, Clim. Dyn., 25, 815835.
  • Reid, S., and R. Turner (2001), Correlation of real and model wind speeds in different terrains, Wea. Forecasting, 16, 620627.
  • Rife, D. R., C. A. Davis, Y. Liu, and T. T. Warner (2004), Predictability of low-level winds by mesoscale meteorological models, Mon. Wea. Rev., 132, 25332569.
  • Romero, R., G. Summer, C. Ramis, and A. Genovés (1999), A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area, Int. J. Climatol., 19, 765785.
  • Rontu, L. (2006), A study on parameterization of orography-related momentum fluxes in a synoptic-scale NWP model, Tellus, 58A, 6981.
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang, and J. G. Powers (2008), A description of the advanced research WRF version 3. Technical Report TN-475+STR, NCAR.
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers (2005), A description of the advanced research WRF Version 2. Technical Report TN-468+STR, NCAR.
  • Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Quarter. J. Roy. Met. Soc., 131, 29613012.
  • Von Storch, H. (1995), Inconsistencies at the interface of climate impact studies and global climate research, Meteorol. Z., 4 NF, 7280.
  • Walter, A., K. Keuler, D. Jacob, R. Knoche, A. Block, S. Kotlarski, G. Müller-Westermeier, D. Rechid, and W. Ahrens (2006), A high resolution data set of German wind velocity 1951–2001 and comparison with regional climate model results, Meteorol. Z., 15, 585596.
  • White, D., M. Richman, and B. Yarnal (1991), Climate regionalization and rotation of principal components, Int. J. Climatol., 11, 125.
  • Whiteman, C. D. (2000), Mountain Meteorology: Fundamentals and Applications, 355 pp, Oxford University Press, New York, New York.
  • Zagar, N., M. Zagar, J. Cedilnik, G. Gregoric, and J. Rakovec (2006), Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain, Tellus, 58A, 445455.