SEARCH

SEARCH BY CITATION

References

  • Albo, S. E., O. O. Oluwole, and R. C. Miake-Lye (2011), The Aerodyne Inverse Modeling System (AIMS): Source estimation applied to the FFT 07 experiment and to simulated mobile sensor data, Atmos. Environ., 45, 60856092.
  • Baldasano, J. M., M. Gonçalves, A. Soret, and P. Jiménez-Guerrero (2010), Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan area, Atmos. Environ., 44, 29973006.
  • Bergin, M. S., et al. (2007), Regional air quality: Local and interstate impacts of NOx and SO2 emissions on ozone and fine particulate matter in the Eastern United States, Environ. Sci. Technol., 41, 46774689.
  • Boylan, J. W., and A. G. Russell (2006), PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 49464959.
  • Brioude, J., et al. (2011), Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique, J. Geophys. Res., 116, D20305, doi:10.1029/2011JD016215.
  • Buzcu, B., and M. P. Fraser (2006), Source identification and apportionment of volatile organic compounds in Houston, TX, Atmos. Environ., 40, 23852400.
  • Byun, D. W., and J. K. S. Ching (1999), Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modeling system, EPA/600/R-99/030, U.S. Environmental Protection Agency, Office of Research and Development.
  • de Gouw, J. A., et al., (2007), Quantification of ethylene emissions from petrochemical industries in Houston, Texas: Large disagreements with emission inventories, American Geophysical Union, Fall Meeting 2007, abstract #A13I-06. (available at http://www.epa.gov/ttnchie1/conference/ei17/session2/joost.pdf).
  • Henze, D. K., J. H. Seinfeld, and D. T. Shindell (2009), Inverse modeling and mapping US air quality influences of inorganic PM(2.5) precursor emissions using the adjoint of GEOS-Chem, Atmos. Chem. Phys., 9, 58775903, doi:10.5194/acp-9-5877-2009.
  • Hopke, P. K. (2003), Recent developments in receptor modeling, J. Chemometr., 17(5), 255265.
  • Isakov, V., et al. (2009), Combining regional- and local-scale air quality models with exposure models for use in environmental health studies, J. Air Waste Manag. Assoc., 59, 461472.
  • Kim, S.-W., et al. (2011), Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006, Atmos. Chem. Phys., 11, 11,36111,386.
  • Knighton, W. B., et al. (2012), Detecting fugitive emissions of 1,3-butadiene and styrene from a petrochemical facility: An application of a mobile laboratory and a modified Proton Transfer Reaction Mass Spectrometer, Ind. Eng. Chem. Res., 51, 12,70612,711.
  • Kolb, C. E., et al. (2004), Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distribution and emission source characteristics, Environ. Sci. Technol., 38, 56945703.
  • Lefer, B., B. Rappenglück, J. Flynn, and C. Haman (2010a), Photochemical and meteorological relationships during the Texas-II Radical and Aerosol Measurement Project (TRAMP), Atmos. Environ., 44, 40054013.
  • Lefer, B. L., et al., (2010b), Overview and major findings of the Study of Houston Atmospheric Radical Precursors (SHARP) campaign, American Geophysical Union, Fall Meeting, abstract #A34C-05.
  • Mellqvist, J., et al. (2010), Measurements of industrial emissions of alkenes in Texas using the solar occultation flux method, J. Geophys. Res., 115, D00F17, doi:10.1029/2008JD011682.
  • Mendoza-Dominguez, A., and A. G. Russell (2001), Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling, Atmos. Environ., 35, 28792894.
  • Olaguer, E. P. (2011), Adjoint model enhanced plume reconstruction from tomographic remote sensing measurements, Atmos. Environ., 45, 69806986.
  • Olaguer, E. P. (2012), Near-source air quality impacts of large olefin flares, J. Air Waste Manag. Assoc., 62, 978988.
  • Olaguer, E. P. (2013), Application of an adjoint neighborhood-scale chemistry transport model to the attribution of primary formaldehyde at Lynchburg Ferry during TexAQS II, J. Geophys. Res., Atmos., 118, 49364946, doi:10.1002/jgrd.50406.
  • Paatero, P., and U. Tapper (1994), Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111126.
  • Randall, D., and J. Coburn (2010), Critical review of DIAL emission test data for BP petroleum refinery in Texas City, Texas, Rep. EPA 453/R-10-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle, North Carolina.
  • Stutz, J., et al. (2011), Quantification of hydrocarbon, NOx, and SO2 emissions from petrochemical facilities in Houston: Interpretation of the 2009 FLAIR dataset, Rep. 10–045, Air Quality Research Program, University of Texas at Austin.
  • Texas Commission on Environmental Quality (2010), Differential absorption lidar study, Rep., Austin, TX. (available at tceq.com/assets/public/implementation/tox/apwl/TexasCityH2S.docx)
  • Texas Commission on Environmental Quality (TCEQ) (2013a), Central registry, air emissions inventory, Austin, TX. (available at http://www.tceq.state.tx.us/).
  • Texas Commission on Environmental Quality (TCEQ) (2013b), “Air pollutant watch list proposed change – removal of Texas City, benzene” report, Austin, TX.
  • Tong, Z., et al. (2012), Modeling spatial variations of black carbon particles in an urban highway-building environment, Environ. Sci. Technol., 46, 312319.
  • United States Environmental Protection Agency (EPA) (2008), EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & user guide.