SEARCH

SEARCH BY CITATION

References

  • Barker, H. W., and P. Räisänen (2005), Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs, Q. J. R. Meteorol. Soc., 131, 31033122.
  • Barker, H. W., G. L. Stephens, and Q. Fu (1999), The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry, Q. J. R. Meteorol. Soc., 125, 21272152.
  • Barker, H. W., R. Pincus, and J.-J. Morcrette (2002), The Monte-Carlo Independent Column Approximation: Application within large-scale models, Proceedings GCSS/ARM Workshop on the Representation of Cloud Systems in Large-Scale Models, Kananaskis, Al, Canada, 10 pp.
  • Barker, H. W., et al. (2003), Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds, J. Clim., 16, 26762699.
  • Bony, S., and K. A. Emanuel (2001), A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data, J. Atmos. Sci., 58, 31583183.
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider (1994), The albedo of fractal stratocumulus clouds, J. Atmos. Sci., 51, 24342455.
  • Chou, M.-D., and M. J. Suarez (1999), A solar radiation parameterization for atmospheric studies, [Last revision on March 2002] Technical Report Series on Global Modeling and Data Assimilation, M.J. Suarez (Ed.), NASA/TM-1999-104606, Vol. 15, Goddard Space Flight Center, Greenbelt, MD, 42 pp.
  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan (2001), A thermal infrared radiation parameterization for atmospheric studies, [Last revision on July 2002] Technical Report Series on Global Modeling and Data Assimilation, M.J. Suarez (Ed.), NASA/TM-2001-104606, Vol. 19, Goddard Space Flight Center, Greenbelt, MD, 56 pp.
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233244.
  • Cole, J. N. S., H. W. Barker, W. O'Hirok, E. E. Clothiaux, M. F. Khairoutdinov, and D. A. Randall (2005), Atmospheric radiative transfer through global arrays of 2D clouds, Geophys. Res. Lett., 32, L19817, doi:10.1029/2005GL023329.
  • Collins, W. D., et al. (2004), Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Technical Note, NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, CO, 226 pp.
  • Collins, W. D., et al. (2006), Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.
  • Cox, S. J., P. W. Stackhouse Jr., S. K. Gupta, J. C. Mikovitz, M. Chiacchio, and T. Zhang (2004), The NASA/GEWEX Surface Radiation Budget Project: Results and analysis. In IRS 2004: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium, Busan, Korea, edited by H. Fischer and B.-J. Soon, A. Deepak Publishing, 419 pp.
  • Dobbie, J., J. Li, and P. Chýlek (1999), Two- and four-stream optical properties for water clouds and solar wavelengths, J. Geophys. Res., 104, 20672079.
  • Ebert, E. E., and J. A. Curry (1992), A parameterization of cirrus cloud optical properties for climate models, J. Geophys. Res., 97, 38313836.
  • Edwards, J. M., S. Havemann, J. C. Thelen, and A. J. Baran (2007), A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM, Atmos. Res., 83, 1935.
  • Ellingson, R. G., and Y. Fouquart (1991), The intercomparison of radiation codes in climate models—An overview, J. Geophys. Res., 96, 89258927.
  • Ferrier, B. S., Y. Lin, T. Black, E. Rogers, and G. DiMego (2002), Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model, Preprints, 15th Conference on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.
  • Freidenreich, S. M., and V. Ramaswamy (1999), A new multiple-band solar radiative parameterization for general circulation models, J. Geophys. Res., 104, 31,38931,409.
  • Fu, Q. (1996), An accurate parameterization of the solar radiative properties of cirrus clouds for climate models, J. Clim., 9, 2,0582,082.
  • Fu, Q., and K. N. Liou (1992), On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 21392156.
  • Fu, Q., and K. N. Liou (1993), Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 20082025.
  • Fu, Q., P. Yang, and W. B. Sun (1998), An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models, J. Clim., 11, 22232237.
  • Geleyn, J.-F., and A. Hollingsworth (1979), An economical analytical method for the computation of the interaction between scattering and line absorption of radiation, J. Atmos. Phys., 52, 116.
  • Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J.-L. F. Li (2010), Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model, J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.
  • Gu, Y., and K. N. Liou (2006), Cirrus cloud horizontal and vertical inhomogeneity effects in a GCM, Meteorol. Atmos. Phys., 91, 223235.
  • Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso (2003), Parameterization of cloud-radiation processes in the UCLA general circulation model, J. Clim., 16, 33573370.
  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell (2011), Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution, J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.
  • Hong, S. Y., H. M. H. Juang, and Q. Y. Zhao (1998), Implementation of prognostic cloud scheme for a regional spectral model, Mon. Weather Rev., 126, 26212639.
  • Hu, Y. X., and K. Stamnes (1993), An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Clim., 6, 728742.
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins (2008), Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
  • Intergovernmental Panel on Climate Change (2007), Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC, edited by S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Cambridge University Press, New York, 996. pp.
  • Stackhouse, Jr., P. W., S. K. Gupta, S. J. Cox, T. Zhang, J. Mikovitz, and L. M. Hinkelman (2011), The NASA/GEWEX surface radiation budget release 3.0: 24.5-year SRB data set released, GEWEX News, 21, No. 1, February, 10–12.
  • Key, J. (2001), Streamer user's guide, Cooperative Institute for Meterological Satellite Studies, University of Wisconsin, 96 pp.
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch (1996), Description of the NCAR Community Climate Model (CCM3), NCAR Tech. Note NCAR/TN-420+STR, 143 pp. [Available from Publications Office of NCAR, P.O. Box 3000, Boulder, CO 80307.]
  • King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks (2003), Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Rem. Sens., 41, 442458.
  • Kristjässon, J. E., J. M. Edwards, and D. L. Mitchell (1999), A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmosphere, Phys. Chem. Earth, B24, 231236.
  • Li, J. (2002), Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, including cloud scattering and overlap, J. Atmos. Sci., 59, 33023320.
  • Li, J., and H. W. Barker (2005), A radiation algorithm with correlated-k distribution, part I: Local thermal equilibrium, J. Atmos. Sci., 62, 286309.
  • Liang, X.-Z., and W.-C. Wang (1997), Cloud overlap effects on general circulation model climate simulations, J. Geophys. Res., 102, 11,03911,047.
  • Liang, X.-Z., and F. Zhang (2013), Cloud-Aerosol-Radiation (CAR) ensemble modeling system, Atmos. Chem. Phys. Discuss., 13, 10,19310,261, doi:10.5194/acpd-13-10193-2013.
  • Lindner, T. H., and J. Li (2000), Parameterization of the optical properties for water clouds in the infrared, J. Clim., 13, 17971805.
  • Liou, K. N., Y. Gu, Q. Yue, and G. McFarguhar (2008), On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models, Geophys. Res. Lett., 35, L13805, doi:10.1029/2008GL033918.
  • Martin, G. M., D. W. Johnson, and A. Spice (1994), The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds, J. Atmos. Sci., 51, 18231842.
  • McFarquhar, G. M. (2000), Comments on “Parameterization of effective sizes of cirrus-cloud particles and its verification against observations” by Zhian Sun and Lawrie Rikus (October B, 1999, 125, 3037–3055), Q. J. R. Meteorol. Soc., 127, 261266.
  • Morcrette, J.-J., and Y. Fouquart (1986), The overlapping of cloud layers in shortwave radiation parameterizations, J. Atmos. Sci., 43, 321328.
  • Morcrette, J.-J., and C. Jakob (2000), The response of the ECMWF model to changes in the cloud overlap assumption, Mon. Weather Rev., 128, 17071732.
  • Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus (2008), Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system, Mon. Weather Rev., 136, 47734798.
  • Oreopoulos, L., et al. (2012a), The continual intercomparison of radiation codes: Results from phase I, J. Geophys. Res., 117, D06118, doi:10.1029/2011JD016821.
  • Oreopoulos, L., D. Lee, Y. C. Sud, and M. J. Suarez (2012b), Radiative impacts of cloud heterogeneity and overlap in an atmospheric general circulation model, Atmos. Chem. Phys., 12, 90979111.
  • Pincus, R., S. A. McFarlane, and S. A. Klein (1999), Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites, J. Geophys. Res., 104, 61836191.
  • Pincus, R., H. W. Barker, and J.-J. Morcrette (2003), A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds, J. Geophys. Res., 108(D13), 4376, doi:10.1029/2002JD003322.
  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall (2004), Stochastic generation of subgrid-scale cloudy columns for large-scale models, Q. J. R. Meteorol. Soc., 130, 20472067.
  • Randall, D. A., et al. (2007), Climate models and their evaluation, in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 590662, Cambridge Univ. Press, New York.
  • Randles, C. A., et al. (2013), Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom radiative transfer experiment, Atmos. Chem. Phys., 13, 23472379, doi:10.5194/acp-13-2347-2013.
  • Rossow, W. B., C. Delo, and B. Cairns (2002), Implications of the observed mesoscale variations of clouds for the Earth's radiation budget, J. Clim., 15, 557585.
  • Schwarzkopf, M. D., and V. Ramaswamy (1999), Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment, J. Geophys. Res., 104, 94679488.
  • Shonk, J. K. P., and R. J. Hogan (2010), Effect of improving representation of horizontal and vertical cloud structure on the earth's global radiation budget. Part II: The global effects, Q. J. R. Meteorol. Soc., 136, 12051215.
  • Shonk, J. K. P., R. J. Hogan, G. G. Mace, and J. M. Edwards (2010), Effect of improving representation of horizontal and vertical cloud structure on the earth's global radiation budget. Part I: Review and parameterization, Q. J. R. Meteorol. Soc., 136, 11911204.
  • Slingo, J. M. (1987), The development and verification of a cloud prediction scheme for the ECMWF model, Q. J. R. Meteorol. Soc., 113, 899927.
  • Slingo, A. S. (1989), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 14191427.
  • Smith, R. N. B. (1990), A scheme for predicting layer clouds and their water content in a general circulation model, Q. J. R. Meteorol. Soc., 116, 435460.
  • Stubenrauch, C. J., A. D. Del Genio, and W. B. Rossow (1997), Implementation of subgrid cloud vertical structure inside a GCM and its effect on the radiation budget, J. Clim., 10, 273287.
  • Sun, Z. A. (2008),Development of the Sun-Edwards-Slingo radiation scheme (SES2), CAWCR Technical Report No. 009, Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology, 94pp.
  • Sun, Z. A., and L. Rikus (1999), Parameterization of effective radius of cirrus clouds and its verification against observations, Q. J. R. Meteorol. Soc., 125, 30373056.
  • Szczodrak, M., P. H. Austin, and P. B. Krummel (2001), Variability of optical depth and effective radius in marine stratocumulus clouds, J. Atmos. Sci., 58, 2912.2926.
  • Tian, L., and J. A. Curry (1989), Cloud overlap statistics, J. Geophys. Res., 94, 9,9259,935.
  • Uppala, S. M., D. P. Dee, S. Kobayashi, P. Berrisford, and A. J. Simmons (2008), Towards a climate data assimilation system: Status update of ERA-Interim, ECMWF Newsletter, 115, 1218.
  • Walcek, C. J. (1994), Cloud cover and its relationship to relative humidity during a spring time midlatitude cyclone, Mon. Weather Rev., 122, 10211035.
  • Wielicki, B. A., B. Barkstrom, E. F. Harrison, R. Lee, G. Smith, and J. Cooper (1996), Clouds and the Earth's Radiant Energy System (CERES): An Earth observing system experiment, Bull. Am. Meteorol. Soc., 77, 853868.
  • Wu, X., and X.-Z. Liang (2005), Effect of subgrid cloud-radiation interaction on climate simulations, Geophys. Res. Lett., 32, L24806, doi:10.1029/2005GL024432.
  • Xu, K.-M., and D. A. Randall (1996), A semiempirical cloudiness parameterization for use in climate models, J. Atmos. Sci., 53, 30843102.
  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko (2004), Calculation of radiative fluxes from the surface to top-of-atmosphere based on ISCCP and other global datasets: Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.
  • Zhang, F., X.-Z. Liang, Q. C. Zeng, Y. Gu, and S. J. Su (2013), Cloud-Aerosol-Radiation (CAR) ensemble modeling system: Overall accuracy and efficiency, Adv. Atmos. Sci., 30, 955973, doi:10.1007/s00376-012-2171-z.