SEARCH

SEARCH BY CITATION

References

  • Abarca, S. F., and M. T. Montgomery (2013), Essential dynamics of secondary eyewall formation, J. Atmos. Sci., doi:10.1175/JAS-D-12-0318.1, in press.
  • Black, M. L., and H. E. Willoughby (1992), The concentric eyewall cycle of Hurricane Gilbert, Mon. Weather Rev., 120, 947957.
  • Camargo, S. J., and A. H. Sobel (2005), Western North Pacific tropical cyclone intensity and ENSO, J. Clim., 18, 29963006.
  • Cheung, K. K. W. (2004), Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific, J. Clim., 17, 466484.
  • Cocks, S. B., and W. M. Gray (2002), Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting, Mon. Weather Rev., 130, 19892005.
  • DeMaria, M., and J. D. Pickle (1988), A simplified system of equations for simulation of tropical cyclones, J. Atmos. Sci., 45, 15421554.
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan (2005), Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS), Weather Forecast., 20, 531543.
  • Dodge, P., R. W. Burpee, and F. D. Marks (1999), The kinematic structure of a hurricane with sea level pressure less than 900 mb, Mon. Weather Rev., 127, 9871,004.
  • Dvorak, V. (1975), Tropical cyclone intensity analysis and forecasting from satellite imagery, Mon. Weather Rev., 103, 420430.
  • Emanuel, K. A. (1986), An air-sea interaction theory for tropical cyclones: Part I: Steady state maintenance, J. Atmos. Sci., 43, 585605.
  • Fang, J., and F. Zhang (2012), Effect of beta shear on simulated tropical cyclones, Mon. Weather Rev., 140, 33273346.
  • Fortner, L. E. (1958), Typhoon Sarah, 1956, Bull. Am. Meteorol. Soc., 30, 633639.
  • Gray, W. M. (1979), Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over tropical oceans, D. B. Shaw (Ed.), Roy. Meteor. Soc., James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX, 155218.
  • Hawkins, J. D., M. Helveston, T. F. Lee, F. J. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade (2006), Tropical cyclone multiple eyewall configurations, Preprints, 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, Amer, Meteror. Soc.
  • Hendricks, A. E., M. S. Peng, B. Fu, and T. Li (2010), Quantifying environmental control on tropical cyclone intensity change, Mon. Weather Rev., 138, 32433271.
  • Hill, A. K., and G. M. Lackmann (2009), Influence of environmental humidity on tropical cyclone size, Mon. Weather Rev., 137, 32943315.
  • Holland, G. J. (1983), Tropical cyclones in the Australian/southwest Pacific region, Atmos. Sci. Rep., 363, Colorado State University, Fort Collins, CO, 264 pp.
  • Houze, R. A., Jr. (1993), Cloud Dynamics, pp. 573, Academic Press, San Diego.
  • Houze, R. A., et al. (2006), The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita, Bull. Am. Meteorol. Soc., 87, 15031521.
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell (2007), Hurricane intensity and eyewall replacement, Science, 315, 12351239.
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu (2012), Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes, J. Atmos. Sci., 69, 662674.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Kepert, J. D. (2013), How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?, J. Atmos. Sci., doi:10.1175/JAS-D-13-046.1, in press.
  • Kimball, S. K. (2006), A modeling study of hurricane landfall in a dry environment, Mon. Weather Rev., 134, 19011918.
  • Knaff, J. A., C. R. Sampson, and M. DeMaria (2005), An operational statistical typhoon intensity prediction scheme for the western North Pacific, Weather Forecast., 20, 688699.
  • Kossin, J. P., and M. Sitkowski (2009), An objective model for identifying secondary eyewall formation in hurricanes, Mon. Weather Rev., 137, 876892.
  • Kruskal, W. H., and W. A. Wallis (1952), Use of ranks in one-criterion variance analysis, J. Am. Stat. Assoc., 47, 583621.
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson (1998), The tropical rainfall measuring mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809817.
  • Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams (2004), The formation of concentric vorticity structures in typhoons, J. Atmos. Sci., 61, 27222734.
  • Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo (2008), Vortex interactions and barotropic aspects of concentric eyewall formation, Mon. Weather Rev., 136, 51835198.
  • Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang (2009), Western North Pacific typhoons with concentric eyewalls, Mon. Weather Rev., 137, 37583770.
  • Lander, M. A. (1994), Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991, Weather Forecast., 9, 640654.
  • Maclay, K. S., M. DeMaria, and T. H. Vonder Haar (2008), Tropical cyclone inner-core kinetic energy evolution, Mon. Weather Rev., 136, 48824898.
  • Merrill, R. T. (1984), A comparison of large and small tropical cyclones, Mon. Wea. Rev., 112, 14081418.
  • Montgomery, M. T., and R. J. Kallenbach (1997), A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc., 123, 435465.
  • Nong, S., and K. Emanuel (2003), A numerical study of the genesis of concentric eyewalls in hurricanes, Q. J. R. Meteorol. Soc., 129, 33233338.
  • Panofsky, H. A., and G. W. Brier (1968), Some applications of statistics to meteorology, 224 pp., Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, PA, USA.
  • Rotunno, R., and K. A. Emanuel (1987), An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci., 44, 542561.
  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin (2006), Rapid flamentation zones in intense tropical cyclones, J. Atmos. Sci., 63, 325340.
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang (2012), The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation, J. Atmos. Sci., 69, 26212643.
  • Samsury, C. E., and E. J. Zipser (1995), Secondary wind maxima in hurricanes: Airflow and relationship to rainbands, Mon. Weather Rev., 123, 35023517.
  • Shapiro, S. S., and M. B. Wilk (1965), An analysis of variance test for normality (complete samples), Biometrika, 52(3–4), 591611.
  • Shapiro, L. J., and H. E. Willoughby (1982), The response of balanced hurricanes to local sources of heat and momentum, J. Atmos. Sci., 39, 378394.
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff (2011), Intensity and structure changes during hurricane eyewall replacement cycles, Mon. Weather Rev., 139, 38293847.
  • Smith, R. K., M. T. Montgomery, and N. V. Sang (2009), Tropical cyclone spin-up revisited, Q. J. R. Meteorol. Soc., 135, 13211335.
  • Terwey, W. D., and M. T. Montgomery (2008), Secondary eyewall formation in two idealized, full-physics modeled hurricanes, J. Geophys. Res., 113, D12112, doi:10.1029/2007JD00897.
  • Trenberth, K. E., and C. J. Guillemot (1998), Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses, Clim. Dyn, 213231, doi:10.1007/s003820050219.
  • Ventham, J. D., and B. Wang (2007), Large scale flow patterns and their influence on the intensification rates of western North Pacific tropical storms, Mon. Weather Rev., 135, 11101127.
  • Wang, B., and X. Zhou (2008), Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific, Meteorol. Atmos. Phys., 99, 116.
  • Wang, X., Y. Ma, and N. E. Davidson (2013), Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer, J. Atmos. Sci., 70, 13171341.
  • Weatherford, C. L., and W. M. Gray (1988a), Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology, Mon. Weather Rev., 116, 10321043.
  • Weatherford, C. L., and W. M. Gray (1988b), Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability, Mon. Weather Rev., 116, 10441056.
  • Willoughby, H. E. (1990), Gradient balance in tropical cyclones, J. Atmos. Sci., 47, 265274.
  • Willoughby, H. E., and M. E. Rahn (2004), Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model, Mon. Weather Rev., 132, 30333048.
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah (1982), Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex, J. Atmos. Sci., 39, 395411.
  • Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz (1984), Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model, J. Atmos. Sci., 41, 11691186.
  • Xu, J., and Y. Wang (2010), Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size, Mon. Weather Rev., 138, 41354157.
  • Yamasaki, M. (1968), Numerical simulation of tropical cyclone development with the use of the primitive equations, J. Meteorol. Soc. Jpn, 46, 202214.
  • Zhou, X., and B. Wang (2011), Mechanism of concentric eyewall replacement cycles and associated intensity change, J. Atmos. Sci., 68, 972988.