SEARCH

SEARCH BY CITATION

Keywords:

  • Turbulent fluxes;
  • Coherent turbulence;
  • Flux efficiency;
  • Boreal forests;
  • Wavelet analysis;
  • Heterogeneous surface

[1] Accelerations in the flow over forests generate coherent structures which locally enhance updrafts and downdrafts, forcing rapid exchanges of energy and matter. Here, observations of the turbulent flow are made in a highly heterogeneous black spruce boreal forest in Fairbanks, Alaska at ~2.6 h (12 m) and ~0.6 h (3 m), where h is the mean canopy height of 4.7 m. Wavelet analysis is used to detect coherent structures. The sonic temperature and wind data cover 864 half-hour periods spanning winter, spring, and summer. When mean global statistics of structures are analyzed at the two levels independently, results are similar to other studies. Specifically, an average of eight structures occurs per period, their mean duration is 85 s, and their mean heat flux contribution is 48%. However, this analysis suggests that 31% of the structures detected at 2.6 h, and 13% at 0.6 h, may be influenced by wave-like flow organization. Remarkably, less than 25% of the structures detected occur synchronously in the subcanopy and above canopy levels, which speaks robustly to the lack of flow interaction within only nine vertical meters of the forest.