SEARCH

SEARCH BY CITATION

References

  • Aber, J. D., and C. A. Federer (1992), A generalized, lumped-parameter model of photosynthesis, evaporation and net primary production in temperate and boreal forest ecosystems, Oecologia, 92, 463474.
  • Aber, J. D., P. B. Reich, and M. L. Goulden (1996), Extrapolating leaf CO2 exchange to the canopy: A generalized model of forest photosynthesis compared with measurements by eddy correlation, Oecologia, 106, 257265.
  • Allen, L. H., C. S. Yocum, and E. R. Lemon (1964), Photosynthesis under field conditions. VII. Radiant energy exchanges within a corn crop canopy and implications in water use efficiency, Agron. J., 56(3), 253259.
  • Bartelink, H. H., K. Kramer, and G. M. J. Mohren (1997), Applicability of the radiation-use efficiency concept for simulating growth of forest stands, Agr. Forest Meteorol., 88(1–4), 169179, doi:10.1016/S0168-1923(97)00041-5.
  • Botkin, D. B. (1993), Forest Dynamics: An Ecological Model, Oxford University Press, Oxford, U. K.
  • Brown, K. W., and W. Covey (1966), The energy-budget evaluation of the micrometeorological transfer processes within a cornfield, Agric. Metrol., 3, 7396, doi:10.1016/0002-1571(66)90006-9.
  • Cabral, O. M. R., A. L. C. McWilliam, and J. M. Roberts (1996), In–canopy microclimate of Amazonian forest and estimates of transpiration, in Amazonian Deforestation and Climate, edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, pp. 207220, John Wiley & Sons, Chichester, U. K.
  • Caldwell, M. M., H. P. Meister, J. D. Tenhunen, and O. L. Lange (1986), Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portugese macchia: Measurements in different canopy layers and simulations with a canopy model, Trees, 1, 2541.
  • Collatz, J. G., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agr. Forest Meteorol., 54(2–4), 107136, doi:10.1016/0168-1923(91)90002-8.
  • Dickinson, R. E. (1983), Land surface processes and climate-surface albedos and energy balance, Adv. Geophys., 25, 305353.
  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich (1998), Interactive canopies for a climate model, J. Climate, 11, 2,8232,836, doi:10.1175/1520-0442(1998)011 < 2823:ICFACM > 2.0.CO;2.
  • Falge, E., et al. (2005), Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany, Ecol. Model., 188, 174216, doi:10.1016/j.ecolmodel.2005.01.057.
  • Gash, J. H. C., C. A. Nobre, J. M. Roberts, and R. L. Victoria (1996), An overview of ABRACOS, in Amazonian Deforestation and Climate, edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, pp. 114, John Wiley & Sons, Chichester, U. K.
  • Goldberg, V., and C. Bernhofer (2001), Quantifying the coupling degree between land surface and the atmospheric boundary layer with the coupled vegetation-atmosphere model HIRVAC, Ann. Geophys., 19, 581587.
  • Grünhage, L., and H. D. Haenel (1997), PLATIN I: A model of plant atmosphere interaction for estimating absorbed doses of gaseous pollutants, Environ. Pollut., 98, 3750, doi:10.1016/S0269-7491(97)00114-0.
  • Harley, P. C., and J. D. Tenhunen (1991), Modelling crop photosynthesis— from biochemistry to canopy, in CSSA Special Publication, edited by K. J. Boote and R. S. Loomis, pp. 1739, 19, American Society of Agronomy and Crop Science Society of America, Madison, Wis.
  • Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scaling up from leaf to region, in Advances in Ecological Research, edited by A. MacFadyen and E. D. Ford, pp. 149, vol. 15, Academic Press Inc., London, U. K.
  • Karlik, J. F., and A. H. McKay (2002), Leaf area index, leaf mass density, and allometric relationships derived from harvest of blue oaks in a California oak savanna, USDA Forest Service General Technical Report No. PSW-GTR-184.
  • Kimes, D. S., J. M. Norman, and C. L. Walthall (1985), Modeling the radiant transfers of sparse vegetation canopies, IEEE Trans. Geosci. Remote Sens., 23, 695704.
  • Kolic, B. (1978), Forest Ecoclimatology [in Serbian], University of Belgrade, Belgrade.
  • Lalic, B., and D. T. Mihailovic (2004), An empirical relation describing leaf area density inside the forest for environmental modelling, J. Appl. Meteorol., 43, 641645, doi:10.1175/1520-0450(2004)043 < 0641:AERDLD > 2.0.CO;2.
  • Law, B. E., A. Cescatti, and D. D. Baldocchi (2001), Leaf area distribution and radiative transfer in open-canopy forests: Implications for mass and energy exchange, Tree Physiol., 21, 77778, doi:10.1093/treephys/21.12-13.777.
  • Li, C., S. Frolking, and T. A. Frolking (1992), A model of nitrous oxide evolution from soil driven by rainfall events: I. Model structure and sensitivity, J. Geophys. Res., 97, 9,7599,776, doi:10.1029/92JD00509.
  • Li, C., S. Frolking, and R. Harriss (1994), Modeling carbon biogeochemistry in agricultural soils, Global Biogeochem. Cycles, 8, 237254, doi:10.1029/94GB00767.
  • Li, C. (2000), Modeling trace gas emissions from agricultural ecosystems, Nutr. Cycling Agroecosyst., 58, 259276, doi:10.1023/A:1009859006242.
  • Li, C., J. Aber, F. Stange, K. Butterbach-Bahl, and H. Papen (2000), A process oriented model of N2O and NO emissions from forest soils: I. Model development, J. Geophys. Res., 105, 4,3694,384, doi:10.1029/1999JD900949.
  • Liou, K. N. (2004), An Introduction to Atmospheric Radiation, Academic Press, New York, N. Y, pp. 599.
  • Makar, P. A., J. D. Fuentes, D. Wang, R. M. Staebler, and H. A. Wiebe (1999), Chemical processing of biogenic hydrocarbons within and above a temperate deciduous forest, J. Geophys. Res., 104, 3,5813,603, doi:10.1029/1998JD100065.
  • Mahfouf, J. F. (1990), A numerical simulation of the surface water budget during HAPEX- MOBILHY, Bound.-Lay. Meteorol., 53(3), 201222, dio: 10.1007/BF00154442.
  • Marcado, L. M., C. Huntingford, J. H. C. Gash, P. M. Cox, and V. Jogireddy (2007), Improving the representation of radiation interception and photosynthesis for climate model applications, Tellus Ser. B, 59, 553565.
  • McWilliam, A.-L. C., O. M. R. Cabral, B. M. Gomes, J. L. Esteves, and J. M. Roberts (1996), Forest and pasture leaf-gas exchange in south-west Amazonia, in Amazonian Deforestation and Climate, edited by J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, pp. 265286, John Wiley & Sons, Chichester, U. K.
  • Mihailovic, D. T., T. J. Lee, R. A. Pielke, B. Lalic, I. Arsenic, B. Rajkovic, and P. L. Vidale (2000), Comparison of different boundary layer schemes using single point micrometeorological field data, Theor. Appl. Climatol., 67(3–4), 135151, doi:10.1007/s007040070003.
  • Mix, W., V. Goldberg, and K. H. Bernhardt (1994), Numerical experiments with different approaches for boundary layer modelling under large-area forest canopy conditions, Meteorol. Z., 3, 187192.
  • Monsi, M., and T. Saeki (1953), Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduction, Jpn. J. Bot., 14, 2252.
  • Ni, W., X. Li, and C. E. Woodcock (1997), Transmission of solar radiation in boreal conifer forests: Measurements and models, J. Geophys. Res., 102(D24), 29,55529,566, doi:10.1029/97JD00198.
  • Noilhan, J., and J.-F. Mahfouf (1996), The ISBA land surface parameterisation scheme, Global Planet. Change, 13(1–4), 145159, doi:10.1016/0921-8181(95)00043-7.
  • Oltchev, A., J. Constantin, G. Gravenhorst, and A. Ibrom (1997), A sixlayer SVAT model for a simulation of water vapour and sensible heat fluxes in a spruce forest, J. Hydrol. Hydromech., 1/2, 537.
  • Oltchev, A., J. Cermak, N. Nadezhdina, F. Tatarinov, A. Tishenko, A. Ibrom, and G. Gravenhorst (2002), Transpiration of a mixed forest stand: Field measurements and simulation using SVAT models, Boreal Environ. Res., 7, 389398.
  • Pielke, P. A. (1984), Mesoscale Meteorological Modeling, Academic Press, New York, N. Y.
  • Roberts, J. M., O. M. R. Cabral, and L. F. de Aguiar (1990), Stomatal and boundary layer conductances measured in a terra firme rain forest, J. Appl. Ecol., 27, 336353, doi:10.2307/2403590.
  • Ross, J. K. (1981), The Radiation Regime and Architecture of Plant Stands, Dr W. Junk Publishers, The Hague-Boston-London.
  • Roujean, J. L. (1996), A tractable physical model of shortwave radiation interception by vegetative canopies, J. Geophys. Res., 101(D5), 9,5239,532, doi:10.1029/96JD00343.
  • Running, S. W., and S. T. Gower (1991), FOREST-BGC, a general model of forest ecosystem processes for regional applications, II. Dynamic carbon allocation and nitrogen budgets, Tree Physiol., 9, 147160.
  • Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua (1996), A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation, J. Climate, 9(4), 676705, doi:10.1175/1520-0442(1996)009 < 0676:ARLSPF > 2.0.CO;2.
  • Shugart, H. H. (2002), Forest Gap Models, in Encyclopedia of Global Environmental Change, The Earth System: Biological and Ecological Dimensions of Global Environmental Change, edited by H. A. Mooney and J. G. Canadell, pp. 316323, John Wiley & Sons, Ltd, Chichester, U. K.
  • Shuttleworth, W. J., J. H. C. Gash, J. M. Roberts, C. A. Nobre, L. C. B. Molion, and M. N. G. Ribeiro (1991), Post-deforestation Amazonian climate: Anglo-Brazilian research to improve prediction, J. Hydrol., 129, 7185, doi:10.1016/0022-1694(91)90045-J.
  • Tenhunen, J. D., R. A. Siegwolf, and S. F. Oberbauer (1995), Effects of phenology, physiology, and gradients in community composition, structure, and microclimate on tundra ecosystem CO2 exchange, in Ecophysiology of Photosynthesis, edited by E. D. Schulze and M. M. Caldwell, pp. 431460, Springer, Berlin, Heidelberg, New York.
  • Teske, M. E., and H. W. Thistle (2004), A library of forest canopy structure for use in interception modeling, Forest Ecol. Manag., 198, 341350, doi:10.1016/j.foreco.2004.05.031.
  • Tuzet, A., A. Perrier, and R. Leuning (2003), A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ., 26, 1,0971,116, doi:10.1046/j.1365-3040.2003.01035.x.
  • Weibull, W. (1951), A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293297.
  • Witcosky, J. J., X. H. Yang, and D. R. Miller (1998) The vertical canopy structure of hardwood forests in the Eastern United States. Report No. FHTET-97-08. USDA Forest Service, Morgantown, WV.
  • Wolfe, G. M., and J. A. Thornton (2011), The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 1: Model description and characterization, Atmos. Chem. Phys., 11, 77101, doi:10.5194/acp-11-77-2011.
  • Yang, X., J. J. Witcosky, and D. R. Miller (1999), Vertical overstory canopy architecture of temperate deciduous hardwood forests in the Eastern United States, For. Sci., 45, 349358.
  • Ziemann, A. (1998), Numerical simulation of meteorological quantities in and above forest canopies, Meteorol. Z., 7, 120128.