SEARCH

SEARCH BY CITATION

References

  • Abramopoulos, F., C. Rosenzweig, and B. Choudhury (1988), Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration, J. Clim., 1(9), 921941.
  • Anyah, R., C. Weaver, G. Miguez-Macho, Y. Fan, and A. Robock (2008), Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability, J. Geophys. Res., 113(D7), D07103, doi:10.1029/2007JD009087.
  • Betts, A. (2007), Coupling of water vapor convergence, clouds, precipitation, and land-surface processes, J. Geophys. Res., 112(D10), D10108, doi:10.1029/2006JD008191.
  • Beven, K., and M. Kirkby (1979), A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. J., 24(1), 4369.
  • Buckingham, E. (1907), Studies on the Movement of Soil Moisture, 61 p., US Government Printing Office, Washington.
  • Carsel, R., and R. Parrish (1988), Developing joint probability distributions of soil water retention characteristics, Water Resour. Res., 24(5), 755769.
  • Chen, T. H., et al. (1997), Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes, J. Clim., 10(6), 11941215.
  • Cheruy, F., A. Campoy, J. Dupond, A. Ducharne, F. Hourdin, M. Haeffelin, A. Chiriaco, and A. Idelkadi (2013), Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory, Clim. Dyn., 40, 22512269.
  • Coindreau, O., F. Hourdin, M. Haeffelin, A. Mathieu, and C. Rio (2007), Assessment of physical parameterizations using a global climate model with stretchable grid and nudging, Mon. Weather Rev., 135(4), 14741489.
  • Comunian, A., and P. Renard (2009), Introducing wwhypda: A world-wide collaborative hydrogeological parameters database, Hydrogeol. J., 17(2), 481489.
  • Darcy, H. (1856), Les fontaines de la ville de Dijon, Victor Dalmont, Paris.
  • De Rosnay, P., and J. Polcher (1998), Modelling root water uptake in a complex land surface scheme coupled to a GCM, Hydrol. Earth Syst. Sci., 2, 239255.
  • De Rosnay, P., M. Bruen, and J. Polcher (2000), Sensitivity of surface fluxes to the number of layers in the soil model used in GCMs, Geophys. Res. Lett., 27(20), 33293332.
  • De Rosnay, P., J. Polcher, M. Bruen, and K. Laval (2002), Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes, J. Geophys. Res, 107(D11), 4118.
  • Decharme, B., A. Boone, C. Delire, and J. Noilhan (2011), Local evaluation of the interaction between soil biosphere atmosphere soil multilayer diffusion scheme using four pedotransfer functions, J. Geophys. Res., 116(D20), D20126, doi:10.1029/2011JD016002.
  • Decker, M., and X. Zeng (2009), Impact of modified Richards equation on Global Soil moisture simulation in the Community Land Model (CLM3. 5), J. Adv. Model. Earth Syst., 1, 22 pp, doi:10.3894/JAMES.2009.1.5.
  • Dee, D., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorolog. Soc., 137(656), 553597.
  • Dirmeyer, P., C. Schlosser, and K. Brubaker (2009), Precipitation, recycling, and land memory: An integrated analysis, J. Hydrometeorol., 10(1), 278288.
  • D'Orgeval, T., J. Polcher, and P. De Rosnay (2008), Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sci. Discuss, 5, 22512292.
  • Ducharne, A., and K. Laval (2000), Influence of the realistic description of soil water-holding capacity on the global water cycle in a GCM, J. Clim., 13, 43934413.
  • Ducharne, A., K. Laval, and J. Polcher (1998), Sensitivity of the hydrological cycle to the parametrization of soil hydrology in a GCM, Clim. Dyn., 14(5), 307327.
  • Ducoudré, N., K. Laval, and A. Perrier (1993), Sechiba, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model, J. Clim., 6(2), 248273.
  • Dürr, H., M. Meybeck, and S. Dürr (2005), Lithologic composition of the Earth's continental surfaces derived from a new digital map emphasizing riverine material transfer, Global Biogeochem. Cycles, 19(4), GB4S10, doi:10.1029/2005GB002515.
  • Entekhabi, D., I. Rodriguez-Iturbe, and F. Castelli (1996), Mutual interaction of soil moisture state and atmospheric processes, J. Hydrol., 184(1), 317.
  • Famiglietti, J. S., and E. F. Wood (1994), Multiscale modeling of spatially variable water and energy balance processes, Water Resour. Res., 30, 30613078.
  • Gleeson, T., L. Marklund, L. Smith, and A. Manning (2011a), Classifying the water table at regional to continental scales, Geophys. Res. Lett., 38(5), L05401, doi:10.1029/2010GL046427.
  • Gleeson, T., L. Smith, N. Moosdorf, J. Hartmann, H. Dürr, A. Manning, L. van Beek, and A. Jellinek (2011b), Mapping permeability over the surface of the Earth, Geophys. Res. Lett., 38(2), L02401, doi:10.1029/2010GL045565.
  • Green, W., and G. Ampt (1911), Studies on soil physics, J. Agric. Sci, 4(1), 124.
  • Guillod, B., E. Davin, C. Kündig, G. Smiatek, and S. Seneviratne (2012), Impact of soil map specifications for European climate simulations, Clim. Dyn., 119.
  • Gulden, L., E. Rosero, Z. Yang, M. Rodell, C. Jackson, G. Niu, P. Yeh, and J. Famiglietti (2007), Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile?Geophys. Res. Lett., 34(9), 9402, doi:10.1029/2007GL029804.
  • Haeffelin, M., et al. (2005), SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 253275.
  • Hourdin, F., J.-Y. Grandpeix, C. Rio, and S. Bony (2012), LMDZ5B: The Atmospheric Component of the IPSL Climate Model With Revisited Parameterizations for Clouds and Convection, 21932222, vol. 40.
  • Hourdin, F., et al. (2006), The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dyn., 27(7), 787813.
  • Jacob, D., et al. (2007), An inter-comparison of regional climate models for Europe: Model performance in present-day climate, Clim. Change, 81, 3152.
  • Klein, S., X. Jiang, J. Boyle, S. Malyshev, and S. Xie (2006), Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach, Geophys. Res. Lett., 33(18), L18805, doi:10.1029/2006GL027567.
  • Kollet, S., and R. Maxwell (2008), Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model, Water Resour. Res, 44(2), W02402.
  • Koster, R., and M. Suarez (2001), Soil moisture memory in climate models, J. Hydrometeorol., 2(6), 558570.
  • Koster, R., M. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar (2000), A catchment-based approach to modeling land surface processes in a general circulation model. 1. Model structure, J. Geophys. Res., 105(24), 80924.
  • Koster, R., et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305(5687), 11381140.
  • Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. Prentice (2005), A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19(1), 33, doi:10.1029/2003GB002199.
  • Liang, X., Z. Xie, and M. Huang (2003), A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model, J. Geophys. Res, 108(D16), 86138629.
  • Lo, M., and J. Famiglietti (2010), Effect of water table dynamics on land surface hydrologic memory, J. Geophys. Res., 115(D22), D22118, doi:10.1029/2010JD014191.
  • Lo, M., and J. Famiglietti (2011), Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations, J. Geophys. Res., 116(D5), D05107, doi:10.1029/2010JD015134.
  • Manabe, S. (1969), Climate and the ocean circulation 1. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Weather Rev., 97(11), 739774.
  • Maxwell, R., and N. Miller (2005), Development of a coupled land surface and groundwater model, J. Hydrometeorol., 6(3), 233247.
  • Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3), 513522.
  • Niu, G., and Z. Yang (2003), The versatile integrator of surface atmospheric processes: Part 2: Evaluation of three topography-based runoff schemes, Global Planet. Change, 38(1), 191208.
  • Niu, G., Z. Yang, R. Dickinson, L. Gulden, and H. Su (2007), Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res, 112(D07), 103.
  • Oki, T., D. Entekhabi, and T. Harrold (2004), The global water cycle, in State of the Planet: Frontiers and Challenges in Geophysics, vol. 150, 414.
  • Peixoto, J., and A. Oort (1992), Physics of Climate, 520 pp., American Institute of Physics, New York.
  • Polcher, J. (1995), Sensitivity of tropical convection to land surface processes, J. Atmos. Sci., 52, 31433161.
  • Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. Seneviratne (2012), Asymmetric European summer heat predictability from wet and dry southern winters and springs, Nature Climate Change, 2, 736741, doi:10.1038/nclimate1536.
  • Richards, L. (1931), Capillary conduction of liquids through porous mediums, Physics, 1(5), 318333.
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore (2009), Shifting the diurnal cycle of parameterized deep convection over land, Geophys. Res. Lett., 36, 7, doi:10.1029/2008GL036779.
  • Rio, C., et al. (2012), Control of deep convection by sub-cloud lifting processes: The ALP closure in the LMDZ5B general circulation model, Clim. Dyn., 40, 22712292.
  • Running, S., D. Baldocchi, D. Turner, S. Gower, P. Bakwin, and K. Hibbard (1999), A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data, Remote Sens. Environ., 70(1), 108127.
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise (1999), The soil-precipitation feedback: A process study with a regional climate model, J. Clim., 12(3), 722741.
  • Seneviratne, S., T. Corti, E. Davin, M. Hirschi, E. Jaeger, I. Lehner, B. Orlowsky, and A. Teuling (2010), Investigating soil moisture–climate interactions in a changing climate: A review, Earth Sci. Rev., 99(3), 125161.
  • Stieglitz, M., M. Rind, J. Famiglietti, and C. Rosenzweig (1997), An efficient approach to modeling the topographic control of surface hydrology for regional and global modeling, J. Clim., 10, 118137.
  • Strückmeier, W., and A. Richts (2008), Groundwater Resources Map of the World 1 : 25 000 000 (edition 2008), BGR and UNESCO, http://www.whymap.org/.
  • Trenberth, K., L. Smith, T. Qian, A. Dai, and J. Fasullo (2007), Estimates of the global water budget and its annual cycle using observational and model data, J. Hydrometeorol., 8(4), 758769.
  • van der Ent, R., H. Savenije, B. Schaefli, and S. Steele-Dunne (2010), Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46(9), W09525, doi:10.1029/2010WR009127.
  • Van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(5), 892898.
  • Van Ulden, A., and G. Van Oldenborgh (2006), Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe, Atmos. Chem. Phys., 6(4), 863881.
  • Varado, N., I. Braud, P. Ross, and R. Haverkamp (2006), Assessment of an efficient numerical solution of the 1-D Richards' equation on bare soil, J. Hydrol., 323(1), 244257.
  • Verant, S., K. Laval, J. Polcher, and M. De Castro (2004), Sensitivity of the continental hydrological cycle to the spatial resolution over the Iberian Peninsula, J. Hydrometeorol., 5(2), 267285.
  • Vergnes, J.-P., and B. Decharme (2012), A simple groundwater scheme in the TRIP river routing model: Global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges, Hydrol. Earth Syst. Sci., 16(10), 38893908, doi:10.5194/hess-16-3889-2012.
  • Vernoux, J.-F., J. Barbier, M. Donsimoni, J.-J. Seguin, and J. Vairon, (1999), Etude hydrogeologique du plateau de Saclay (Essone), Tech. rep., 77 p, 30 figures, 10 tableaux, 3 annexes., Bureau de Recherches Géologiques Miniéres, rapport BRGM SGR/IDF R 40840.
  • Yeh, P., and E. Eltahir (2005), Representation of water table dynamics in a land surface scheme. Part I: Model development, J. Clim., 18(12), 18611880.
  • York, J., M. Person, W. Gutowski, and T. Winter (2002), Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, northeastern Kansas, Adv. Water Resour., 25(2), 221238.
  • Zeng, X., and M. Decker (2009), Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table, J. Hydrometeorol, 10(1), 308319.
  • Zobler, L. (1986), A World Soil Profile for Global Climate Modelling, 87802, NASA Technical Memorandum.