SEARCH

SEARCH BY CITATION

References

  • Andrieu, H., and J. D. Creutin (1995), Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part 1: Formulation, J. Appl. Meteorol., 34, 225239.
  • Andrieu, H., J. D. Creutin, G. Delrieu, and D. Faure (1997), Use of weather radar for the hydrology of a mountainous area. Part 1: Radar measurement interpretation, J. Hydrol., 193, 125.
  • Austin, P. M. (1987), Relation between measured radar reflectivity and surface rainfall, Mon. Weath. Rev., 115, 10531070.
  • Austin, P. M., and A. C. Bemis (1950), A quantitative study of the “bright band” in radar precipitation echoes, J. Meteorol., 7, 145151.
  • Battan, L. J. (1973), Radar Observation of the Atmosphere, pp. 324, The University of Chicago Press., Chicago.
  • Bellon, A., G. Lee, and I. Zawadzki (2005), Error statistics of VPR corrections in stratiform precipitation, J. Appl. Meteorol., 44, 9981015.
  • Berne, A., G. Delrieu, H. Andrieu, and J. D. Creutin (2004), Influence of the vertical profile of reflectivity on radar-estimated rain rates at short time steps, J. Hydrometeorol., 5, 296310.
  • Borga, M., E. N. Anagnostou, and W. F. Krajewski (1997), A simulation approach for validation of a brightband correction method, J. Appl. Meteorol., 36, 15071518.
  • Chang, F., C. J. Chen, and C. J. Lu (2004), A linear-time component-labeling algorithm using contour tracing technique, Comput. Vision Image Understanding, 93(2), 206220.
  • Chumchean, S., A. Seed, and A. Sharma (2004), Application of scaling in radar reflectivity for correcting range-dependent bias in climatological radar rainfall estimates, J. Atmos. Oceanic. Technol., 21, 15451556.
  • Ciach, G. J., and W. F. Krajewski (1999), On the estimation of radar rainfall error variance, Adv. Water Resour., 22(6), 585595.
  • Ciach, G. J., and W. F. Krajewski (2006), Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma, Adv. Water Resour., 29, 14501463.
  • Ciach, G. J., W. F. Krajewski, and G. Villarini (2007), Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data, J. Hydrometeorol., 8, 13251347.
  • Cluckie, I. D., R. J. Griffith, A. Lane, and K. A. Tilford (2000), Radar hydrometeorology using a vertically pointing radar, Hydrol. Earth Syst. Sci., 4(4), 565580.
  • Collier, C. G. (1986), Accuracy of rainfall estimates by radar, part 1: Calibration by telemetering raingauges, J. Hydrol., 83, 207223.
  • Delrieu, G., J. D. Creutin, and H. Andrieu (1995), Simulation of radar mountain returns using a digitized terrain model, J. Atmos. Oceanic Technol., 12, 10381049.
  • Delrieu, G., B. Boudevillain, J. Nicol, B. Chapon, P. E. Kirstetter, H. Andrieu, and D. Faure (2009), Bollène-2002 experiment: Radar quantitative precipitation estimation in the Cévennes-Vivarais region (France), J. Appl. Meteorol. Climatol., 48(7), 14221447.
  • Dinku, T., E. N. Anagnostou, and M. Borga (2002), Improving radar-based estimation of rainfall over complex terrain, J. Appl. Meteorol., 41, 11631178.
  • Dixon, M., and G. Wiener (1993), Titan: Thunderstorm idenfication, tracking, analysis and nowcasting—A radar-based methodology, J. Atmos. Oceanic Technol., 10(6), 785797.
  • Doviak, R. J., and D. S. Zrnic (1993), Doppler Radar and Weather Observations, 562pp., Academic Press, San Diego CA.
  • Fabry, F., and I. Zawadzki (1995), Long-term radar observations of the melting layer of precipitation and their interpretation, J. Atmos. Sci., 52(7), 838851.
  • Fabry, F., G. L. Austin, and D. Tees (1992), The accuracy of rainfall estimates by radar as a function of range, Q. J. R. Meteorol. Soc., 118, 435453.
  • Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi (1997), On the extraction of near-surface index of refraction using radar phase measurements from ground targets, J. Atmos. Oceanic. Technol., 14, 978987.
  • Gabella, M., and G. Perona (1998), Simulation of the orographic influence on weather radar using a geometric-optics approach, J. Atmos. Oceanic. Technol., 15, 14851494.
  • Gabella, M., J. Joss, and G. Perona (2000), Optimizing quantitative precipitation estimates using a noncoherent and coherent radar operating on the same area, J. Geophys. Res., 105(D2), 22372245.
  • Gabella, M., M. Bolliger, U. Germann, and G. Perona (2005), Large sample evaluation of cumulative rainfall amounts in the Alps using a network of three radars, Atm. Res., 77, 256268.
  • Germann, U., and J. Joss (2002), Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to ground level, J. Appl. Meteorol., 41, 542557.
  • Germann, U., G. Galli, M. Boscacci, and M. Bolliger (2006), Radar precipitation measurement in a mountainous region, Q. J. R. Meteorol. Soc., 132, 16691692.
  • Germann, U., M. Berenguer, D. Sempere-Torres, and M. Zappa (2009), REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region, Q. J. R. Meteorol. Soc., 135, 445456, doi:10.1002/qj.375.
  • Goudenhoofdt, E., and L. Delobbe (2009), Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195203.
  • Gourley, J. J., and C. M. Calvert (2003), Automated detection of the bright band using WSR-88D data, Weath. Forecasting, 18, 585599.
  • Gourley, J. J., D. P. Jorgensen, S. Y. Matrosov, and Z. L. Flamig (2009), Evaluation of incremental improvements to quantitative precipitation estimates in complex terrain, J. Hydrometeorol., 10, 15071520.
  • Habib, E., W. F. Krajewski, and A. Kruger (2001), Sampling errors of fine resolution tipping-bucket rain gauge measurements, J. Hydrol. Eng., 6(2), 159166.
  • Handwerker, J. (2002), Cell tracking with TRACE3D—A new algorithm, Atm. Res., 61, 1534.
  • Harrold, T. W., and P. G. Kitchingman (1975), Measurement of surface rainfall using radar when the beam intersect the melting layer, in Preprint Vol, 16th Radar Meteorology Converence, pp. 473478, Amer. Meteor. Soc., Boston.
  • Hazenberg, P., H. Leijnse, and R. Uijlenhoet (2011a), Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes, Water Resour. Res., 47, W02507, doi:10.1029/2010WR009068.
  • Hazenberg, P., N. Yu, B. Boudevillain, G. Delrieu, and R. Uijlenhoet (2011b), Scaling of raindrop size distributions and classification of radar reflectivity–rain rate relations in intense Mediterranean precipitation, J. Hydrol., 402(3-4), 179192.
  • He, L., Y. Chao, K. Suzuki, and K. Wu (2009), Fast connected-component labeling, Pattern Recognit., 42(9), 19771987.
  • Hobbs, P. V., S. Chang, and J. D. Locatelli (1974), The dimensions and aggregation of ice crystals in natural clouds, J. Geophys. Res., 79(15), 21992206.
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. DeWayne Mitchell, G. Stumpf, M. D. Eilts, and K. W. Thomas (1998), The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm, Weath. Forecasting, 13, 263276.
  • Joss, J., and R. Lee (1995), The application of radar-gauge comparisons to operational precipitation profile corrections, J. Appl. Meteorol., 34, 26122630.
  • Joss, J., and A. Pittini (1991), Real-time estimation of the vertical profile of radar reflectivity to improve the measurement of precipitation in an Alpine region, Meteorol. Atmos. Phys., 47, 6172.
  • Joss, J., and A. Waldvogel (1990), Precipitation measurement and hydrology, in Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, edited by D. Atlas, pp. 577597, Amer. Meteor. Soc., Boston.
  • Kirstetter, P. E., H. Andrieu, G. Delrieu, and B. Boudevillain (2010a), Identification of vertical profiles of reflectivity for correction of volumetric radar data using rainfall classification, J. Appl. Meteorol. Climatol., 49, 21672180.
  • Kirstetter, P. E., G. Delrieu, B. Boudevillain, and C. Obled (2010b), Toward an error model for radar quantitative precipitation estimation in the Cévennes-Vivarais region, France, J. Hydrol., 394, 2841.
  • Kitchen, M., and R. M. Blackall (1992), Representativeness errors in comparisons between radar and gauge measurements of rainfall, J. Hydrol., 134, 1333.
  • Kitchen, M., and P. M. Jackson (1993), Weather radar performance at long range—Simulated and observed, J. Appl. Meteorol., 32, 975985.
  • Kitchen, M., R. Brown, and A. G. Davies (1994), Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation, Q. J. R. Meteorol. Soc., 120, 12311254.
  • Klaassen, W. (1988), Radar observation and simulation of the melting layer of precipitation, J. Atmos. Sci., 45, 37413753, doi:10.1175/1520-0469(1988)045¡3741:ROASOT¿2.0.CO;2.
  • Klaassen, W. (1989), From snowflake to raindrop, Doppler radar observations and simulations of precipitation, Ph.D. thesis, Rijksunversiteit Utrecht.
  • Lakshmanan, V., and T. Smith (2010), An objective method of evaluating and devising storm-tracking algorithms, Weath. Forecasting, 25, 701709, doi:10.1175/2009WAF22223301.
  • Mandapaka, P. V., G. Villarini, B. C. Seo, and W. F. Krajewski (2010), Effect of radar-rainfall uncertainty on the spatial characterization of rainfall events, J. Geophys. Res., 115, D17110, doi:10.1029/2009JD013366.
  • Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn (1955), Advances in radar weather, Adv. in Geophys., 2, 156.
  • Martner, B. E., S. E. Yuter, A. B. White, S. Y. Matrosov, D. E. Kingsmill, and F. Martin Ralph (2008), Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band, J. Hydrometeorol., 9, 408425.
  • Menke, W. (1989), Geophysical data analysis: Discrete inverse theory, p. 260.
  • Molini, A., P. La Barbera, L. G. Lanza, and L. Stagi (2001), Rainfall intermittency and the sampling error of tipping-bucket rain gauges, Phys. Chem. Earth (C), 26, 737742.
  • Morin, E., W. F. Krajewski, D. C. Goodrich, X. Gao, and S. Sorooshian (2003), Estimating rainfall intensities from weather radar data: The scale-dependency problem, J. Hydrometeorol., 4, 782796.
  • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models. Part 1—A discussion of principles., J. Hydrol., 10, 282290.
  • Russchenberg, H. W. J. (1992), Ground-based remote sensing of precipitation using a multi-polarized FM-CW Doppler radar, Ph.D. thesis, Delft University of Technology. 206 pp.
  • Sánchez-Diezma, R., I. Zawadzki, and D. Sempere-Torres (2000), Identification of the bright band through the analysis of volumetric radar data, J. Geophys. Res., 105(D2), 22252236.
  • Seliga, T. A., and V. N. Bringi (1976), Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation, J. Appl. Meteorol., 51(1), 6976.
  • Seo, D. J., J. Breidenbach, R. Fulton, D. Miller, and T. O'Bannon (2000), Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity, J. Hydrometeorol., 1, 222240.
  • Smith, C. J. (1986), The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar, J. Atmos. Oceanic. Technol., 3, 129141.
  • Smith, J. A., M. L. Baeck, Y. Zhang, and C. A. Doswell III (2001), Extreme rainfall and flooding from supercell thunderstorms, J. Hydrometeorol., 2, 469489.
  • Smyth, T. J., and A. J. Illingworth (1998), Radar estimates of rainfall rates at the ground in bright band and non-bright band events, Q. J. R. Meteorol. Soc., 124, 24172434.
  • Steiner, M., and J. A. Smith (1998), Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model, Atm. Res., 47-48, 317326.
  • Steiner, M., and J. A. Smith (2002), Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data, J. Atmos. Oceanic. Technol., 19, 673686.
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter (1995), Climatological characterization of three-dimensional storm structure from operational radar and raingauge data, J. Appl. Meteorol., 34, 19782007.
  • Steiner, M., J. A. Smith, S. J. Burges, C. Alonso, and R. W. Darden (1999), Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation, Water Resour. Res., 8, 24872503.
  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone (1984), Characteristics through the melting layer of stratiform clouds, J. Atmos. Sci., 41, 32273237.
  • Suzuki, K., I. Horiba, and N. Sugie (2003), Linear-time connected-component labeling based on sequential local operations, Comput. Vision Image Understanding, 89(1), 123.
  • Uijlenhoet, R., and A. Berne (2008), Stochastic simulation experiment to assess radar rainfall retrieval uncertainties associated with attenuation and its correction, Hydrol. Earth Syst. Sci., 12, 587601.
  • Uijlenhoet, R., M. Steiner, and J. A. Smith (2003), Variability of rain drop size distributions in a squall line and implications for radar rainfall estimation, J. Hydrometeorol., 4, 4361.
  • Ulbrich, C. W., and L. G. Lee (1999), Rainfall measurement error by WSR-88D radars due to variations in Z–R law parameters and the radar constant, J. Atmos. Oceanic. Technol., 16, 10171024.
  • Vignal, B., and W. F. Krajewski (2001), Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates, J. Hydrometeorol., 2, 490504.
  • Vignal, B., H. Andrieu, and J. D. Creutin (1999), Identification of vertical profiles of reflectivity from volume scan radar data, J. Appl. Meteorol., 38, 12141228.
  • Vignal, B., G. Galli, J. Joss, and U. Germann (2000), Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates, J. Appl. Meteorol., 39, 17151726.
  • Villarini, G., and W. F. Krajewski (2010), Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall, Surv. Geophys., 31, 107129.
  • Villarini, G., W. F. Krajewski, G. J. Ciach, and D. L. Zimmerman (2009), Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates, Water Resour. Res., 45, W01404, doi:10.1029/2008WR006946.
  • Wagenknecht, G. (2007), A contour tracing and coding algorithm for generating 2D contour codes from 3D classified objects, Pattern Recognit., 40(4), 12941306.
  • Waldvogel, A. (1974), The N0 jump of raindrop spectra, J. Atmos. Sci., 31, 10671078.
  • Willis, P. T., and A. J. Heymsfield (1989), Structure of the melting layer in mesoscale convective system stratiform precipitation, J. Atmos. Sci., 46(13), 20082025.
  • Wu, K., E. Otoo, and K. Suzuki (2009), Optimizing two-pass connected-component labeling algorithms, Pattern Anal. Appl., 12, 117135., doi:10.1007/s10044-008-0109-y.
  • Yuter, S. E., and R. A. Houze Jr (1995a), Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part 1: Spatial distribution of updrafts, downdrafts, and precipitation, Mon. Weath. Rev., 123, 19211940.
  • Yuter, S. E., and R. A. Houze Jr (1995b), Three-dimensional kinematic and microphysical evolotion of Florida cumulonimbus. Part 3: Vertical mass transport, mass divergence, and syntesis, Mon. Weath. Rev., 123, 19641983.
  • Zawadzki, I. (1975), On radar-rain gauge comparison, J. Appl. Meteorol., 14, 14301436.
  • Zhang, J., K. Howard, and J. J. Gourley (2005), Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes, J. Atmos. Oceanic. Technol., 22, 3042.
  • Zhang, J., C. Langston, and K. Howard (2008), Brightband identification on vertical profiles of reflectivity from WSR-88D, J. Atmos. Oceanic. Technol., 25, 18591872.