SEARCH

SEARCH BY CITATION

References

  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts (1995), The Oklahoma Mesonet: A technical overview, J. Atmos. Oceanic Technol., 12, 519.
  • Chen, F., and J. Dudhia (2001), Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation, Mon. Weather Rev., 129, 569585.
  • Churchill, D. D., and R. A. Houze (1984), Development and structure of winter monsoon cloud clusters on 10 December 1978, J. Atmos. Sci., 41, 933960.
  • Cotton, W. R., M. A. Stephens, T. Nehrhorn, and G. J. Tripoli (1982), The Colorado State University three-dimensional cloud/mesoscale model-1982. Part II: An ice phase parameterization, J. Rech. Atmos., 16, 295320.
  • Del Genio, A. D., J. Wu, and Y. Chen (2012), Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE, J. Climate, 25(17), 56665688.
  • Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 30773107.
  • Feng, Z., X. Dong, B. Xi, C. Schumacher, P. Minnis, and M. Khaiyer (2011), Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems, J. Geophys. Res., 116, D23202, doi:10.1029/2011JD016451.
  • Feng, Z., X. Dong, B. Xi, S. McFarlane, A. Kennedy, B. Lin, and P. Minnis (2012), Life cycle of midlatitude deep convective systems in a Lagrangian framework, J. Geophys. Res., 117, D23201, doi:10.1029/2012JD018362.
  • Ferrier, B. S., W.-K. Tao, and J. Simpson (1995), A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations, J. Atmos. Sci., 52, 10011033.
  • Fovell, R. G., and Y. Ogura (1988), Numerical simulation of a midlatitude squall line in two dimensions, J. Atmos. Sci., 45, 38463879.
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen (2004a), Precipitation evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics, Mon. Weather Rev., 132, 18971916.
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmusse (2004b), Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics, Mon. Weather Rev., 132, 18971916.
  • Hong, S.-Y., and J.-O. J. Lim (2006), The WRF single-moment 6-class microphysics scheme (WSM6), J. Korean Meteorol. Soc., 42, 129151.
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen (2004), A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103120.
  • Hong, S.-Y., Y. Noh, and J. Dudhia (2006), A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 23182341.
  • Houze, R. A. (1973), A climatological study of vertical transports by cumulus-scale convection, J. Atmos. Sci., 30, 11121123.
  • Houze, R. A. (1977), Structure and dynamics of a tropical squall-line system observed during GATE, Mon. Weather Rev., 105, 15401567.
  • Houze, R. A., Jr. (1982), Cloud clusters and large-scale vertical motions in the tropics, J. Meteorol. Soc. Jpn., 60, 396410.
  • Houze, R. A., Jr. (2004), Mesoscale convective systems, Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.
  • Houze, R. A., S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams (2004), Uncertainties in Oceanic Radar rain maps at Kwajalein and implications for satellite validation, J. Appl. Meteor., 43, 11141132.
  • Janjic, Z. I. (1996), The surface layer in the NCEP Eta Model, Paper presented at 11th Conference on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., Boston, MA, 354–355.
  • Janjic, Z. I. (2002), Nonsingular implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, 437, 61 pp.
  • Johnson, D. E., P. K. Wang, and J. M. Straka (1993), Numerical simulations of the 2 August 1981 CCOPE supercell storm with and without ice microphysics, J. Appl. Meteorol., 32, 745759.
  • Kain, J. S. (2004), The Kain–Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170181.
  • Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen (2011), A comparison of MERRA and NARR eanalyses with the DOE ARM SGP data, J. Climate, 24, 45414557.
  • Klazura, G. E., and D. A. Imy (1993), A description of the initial set of analysis products available from the NEXRAD WSR-88D system, Bull. Am. Meteorol. Soc., 74, 12931311.
  • Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier (2003), Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods, J. Appl. Meteorol., 42, 505527.
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson (2007), Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes, J. Atmos. Sci., 64, 11411164.
  • Lang, S., W.-K. Tao, X. Zeng, and Y. Li (2011), Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems, J. Atmos. Sci., 68, 23062320.
  • Leary, C. A., and R. A. Houze Jr. (1979), Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection, J. Atmos. Sci., 36, 669670.
  • Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang (2009), Impacts of aerosols on the development and precipitation of a mesoscale squall line, J. Geophys. Res., 114, D17205, doi:10.1029/2008JD011581.
  • Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson (2009a), Sensitivity of a cloud-resolving model to bulk and explicit Bin microphysical schemes. Part I: Validation with a PRE-STORM case, J. Atmos. Sci., 66, 321.
  • Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson (2009b), Sensitivity of a cloud-resolving model to bulk and explicit Bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions, J. Atmos. Sci., 66, 2240.
  • Lin, Y.-L., R. D. Farley, and H. D. Orville (1983), Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 10651092.
  • Luo, Y., Y. Wang, H. Wang, Y. Zheng, and H. Morrison (2010), Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations, J. Geophys. Res., 115, D18117, doi:10.1029/2010JD013873.
  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong (1991), Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection, J. Appl. Meteorol., 30, 9851004.
  • Mesinger, F., et al. (2006), North American regional reanalysis, Bull. Am. Meteorol. Soc., 87, 343360.
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16,66316,682.
  • Morrison, H., and A. Gettelman (2008), A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests, J. Climate, 21, 36423659.
  • Morrison, H., G. Thompson, and V. Tatarskii (2009), Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes, Mon. Weather Rev., 137, 9911007.
  • Proctor, F. H. (1988), Numerical simulations of an isolated microburst. Part I: Dynamics and structure, J. Atmos. Sci., 45, 31373160.
  • Proctor, F. H. (1989), Numerical simulations of an isolated microburst. Part II: Sensitivity experiments, J. Atmos. Sci., 46, 21432165.
  • Rutledge, S. A., and P. V. Hobbs (1983), The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder feeder” process in warm-frontal rainbands, J. Atmos. Sci., 40, 11851206.
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers (2008), A description of the advanced research WRF version 3, NCAR Technical Note.
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter (1995), Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data, J. Appl. Meteorol., 34, 19782007.
  • Straka, J. M., and J. R. Anderson (1993), Numerical simulations of microburst-producing storms: some results from storms observed during COHMEX, J. Atmos. Sci., 50, 13291348.
  • Tao, W.-K., and J. Simpson (1993), Goddard cumulus ensemble model. Part I: Model description, Terr. Atmos. Oceanic Sci., 4, 3572.
  • Tao, W.-K., J. Simpson, and M. McCumber (1989), An ice-water saturation adjustment, Mon. Weather Rev., 117, 231235.
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson (2007), Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations, J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.
  • Varble, A., A. Fridlind, E. J. Zipser, A. Ackerman, J. P. Chaboureau, J. Fan, A. Hill, S. A. McFarlane, J. P. Pinty, and B. Shipway (2011), Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure, J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.
  • Yuter, S. E., and R. A. Houze Jr. (1995), Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity, Mon. Weather Rev., 123, 19411963.