SEARCH

SEARCH BY CITATION

References

  • Abramowitz, G., R. Leuning, M. Clark, and A. Pitman (2008), Evaluating the performance of land surface models, J. Clim., 21(21), 54685481, doi:10.1175/2008jcli2378.1.
  • Akbari, H., S. Davis, J. Huang, P. Liu, and H. Taha (1992), The urban heat island: Causes and impacts, in Cooling Our Communities, A Guidebook on Tree Planting and Light-Colored Surfacing, edited by H. Akbari et al., pp. 526, U.S. Environmental Protection Agency, Washington, D.C.
  • Allen, L., F. Lindberg, and C. Grimmond (2011), Global to city scale urban anthropogenic heat flux: Model and variability, Int. J. Climatol., 31(13), 19902005.
  • Anyah, R. O., C. P. Weaver, G. Miguez-Macho, Y. Fan, and A. Robock (2008), Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability, J. Geophys. Res., 113, D07103, doi:10.1029/2007JD009087.
  • Berdahl, P., and R. Fromberg (1982), The thermal radiance of clear skies, Sol. Energy, 29(4), 299314.
  • Beven, K., and J. Kirkby (1979), A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24(1), 4369.
  • Beven, K., R. Lamb, P. Quinn, R. Romanowics, and J. Freer (1995), TOPMODEL, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 627688, Water Resources Publications, Colo.
  • Bonan, G. B. (1996), Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide., Technical Rep., National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div., Boulder, CO, USA.
  • Bozonnet, E., R. Belarbi, and F. Allard (2005), Modelling solar effects on the heat and mass transfer in a street canyon, a simplified approach, Sol. Energy, 79(1), 1024.
  • Ca, V. T., T. Asaeda, and Y. Ashie (1999), Development of a numerical model for the evaluation of the urban thermal environment, J. Wind Eng. Ind. Aerodyn., 81(1), 181196.
  • Camuffo, D., and A. Bernardi (1982), An observational study of heat fluxes and their relationships with net radiation, Boundary Layer Meteorol., 23(3), 359368.
  • Chen, F., and J. Dudhia (2001), Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569585.
  • Chen, F., H. Kusaka, R. Bornstein, J. Ching, C. Grimmond, S. Grossman-Clarke, T. Loridan, K. W. Manning, A. Martilli, and S. Miao (2011), The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31(2), 273288.
  • Ching, J., M. Brown, T. McPherson, S. Burian, F. Chen, R. Cionco, A. Hanna, T. Hultgren, D. Sailor, and H. Taha (2009), National urban database and access portal tool, Bull. Am. Meteorol. Soc., 90(8), 11571168.
  • Chuanyan, Z., N. Zhongren, and C. Guodong (2005), Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China, Ecol Model, 189(1), 209220.
  • Chun, C., and A. Tamura (2005), Thermal comfort in urban transitional spaces, Build. Environ., 40(5), 633639.
  • Crago, R. D., W. Okello, and M. F. Jasinski (2012), Equations for the drag force and aerodynamic roughness length of urban areas with random building heights, Boundary Layer Meteorol., 145(3), 423437.
  • Deardorff, J. W. (1978), Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res., 83, 8891903.
  • DESA (2012), World urbanization prospects: The 2011 revision, in Population, edited by U. Nations, United Nations Publications, N.Y.
  • de La Flor, F. S., and S. A. Dom��́nguez (2004), Modelling microclimate in urban environments and assessing its influence on the performance of surrounding buildings, Energy Build., 36(5), 403413.
  • Dickinson, R. E., P. Kennedy, and A. Henderson-Sellers (1993), Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model, Technical Rep. NCAR/TN-387+STR, National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO, USA, doi:10.5065/D67W6959.
  • Dimoudi, A., and M. Nikolopoulou (2003), Vegetation in the urban environment: microclimatic analysis and benefits, Energy Build., 35(1), 6976.
  • Eliasson, I. (1996), Urban nocturnal temperatures, street geometry and land use, Atmos. Environ., 30(3), 379392.
  • Eliasson, I., and M. Svensson (2003), Spatial air temperature variations and urban land use-a statistical approach, Meteorol. Appl., 10(02), 135149.
  • El-Masri, B., R. Barman, P. Meiyappan, Y. Song, M. Liang, and A. K. Jain (2013), Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model, Agric. For. Meteorol., doi:10.1016/j.agrformet.2013.1003.1011.
  • Elnahas, M., and T. J. Williamson (1997), An improvement of the CTTC model for predicting urban air temperatures, Energy Build., 25(1), 4149.
  • Erell, E., and T. Williamson (2006), Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station, Int. J. Climatol., 26(12), 16711694.
  • Fan, Y., G. Miguez-Macho, C. P. Weaver, R. Walko, and A. Robock (2007), Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations, J. Geophys. Res., 112, D10125, doi:10.1029/2006JD008111.
  • Fan, Y., H. Li, and G. Miguez-Macho (2013), Global patterns of groundwater table depth, Science, 339(6122), 940943.
  • Georgakis, C., and M. Santamouris (2006), Experimental investigation of air flow and temperature distribution in deep urban canyons for natural ventilation purposes, Energy Build., 38(4), 367376.
  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia (2012), Summer-time climate impacts of projected megapolitan expansion in Arizona, Nat. Clim. Change, 3(1), 3741.
  • Grimmond, C. (1998), Aerodynamic roughness of urban areas derived from wind observations, Boundary Layer Meteorol., 89(1), 124.
  • Grimmond, C., and T. R. Oke (1999a), Heat storage in urban areas: Local-scale observations and evaluation of a simple model, J. Appl. Meteorol., 38(7), 922940.
  • Grimmond, C. S. B., and T. R. Oke (1999b), Aerodynamic properties of urban areas derived from analysis of surface form, J. Appl. Meteorol., 38(9), 12621292.
  • Grimmond, C., and T. R. Oke (2002), Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS), J. Appl. Meteorol., 41(7), 792810.
  • Gu, L., H. H. Shugart, J. D. Fuentes, T. Black, and S. R. Shewchuk (1999), Micrometeorology, biophysical exchanges and NEE decomposition in a two-story boreal forest—Development and test of an integrated model, Agric. For. Meteorol., 94(2), 123148.
  • Hamdi, R., and V. Masson (2008), Inclusion of a drag approach in the Town Energy Balance (TEB) scheme: Offline 1D evaluation in a street canyon, J. Appl. Meteorol. Climatol., 47(10), 26272644.
  • Honjo, T., and T. Takakura (1991), Simulation of thermal effects of urban green areas on their surrounding areas, Energy Build., 15(3), 443446.
  • Ishida, T., and S. Kawashima (1993), Use of cokriging to estimate surface air temperature from elevation, Theor. Appl. Climatol., 47(3), 147157.
  • Jain, A. K., H. S. Kheshgi, and D. J. Wuebbles (1996), A globally aggregated reconstruction of cycles of carbon and its isotopes, Tellus B, 48(4), 583600.
  • Jin, M., R. E. Dickinson, and D. Zhang (2005), The footprint of urban areas on global climate as characterized by MODIS, J. Clim., 18(10), 15511565.
  • Kim, H. H. (1992), Urban heat island, Int. J. Remote Sens., 13(12), 23192336.
  • Krayenhoff, S., A. Christen, A. Martilli, and T. Oke (2013), A multi-layer radiation model for urban neighbourhoods with trees, Urban Clim. News, 47, 711.
  • Kumar, L., K. S. Andrew, and E. Knowles (1997), Modelling topographic variation in solar radiation in a GIS environment, Int. J. Geogr. Inf. Sci., 11(5), 475497.
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura (2001), A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models, Boundary Layer Meteorol., 101(3), 329358.
  • Lawrence, M. G. (2005), The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications, Bull. Am. Meteorol. Soc., 86, 225233.
  • Lee, T. J. (1992), The impact of vegetation on the atmospheric boundary layer and convective storms, PhD thesis, 155 pp, Colorado State University, CO, USA.
  • Lee, S.-H., and S.-U. Park (2008), A vegetated urban canopy model for meteorological and environmental modelling, Boundary Layer Meteorol., 126(1), 73102.
  • Liang, X., D. P. Lettenmaier, E. Wood, and S. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circu-lation models, J. Geophys. Res., 99, 14,41514,428.
  • Lindroth, A. (1993), Aerodynamic and canopy resistance of short-rotation forest in relation to leaf area index and climate, Boundary Layer Meteorol., 66(3), 265279.
  • Lookingbill, T. R., and D. L. Urban (2003), Spatial estimation of air temperature differences for landscape-scale studies in montane environments, Agric. For. Meteorol., 114(3), 141151.
  • Loridan, T., and C. Grimmond (2012), Multi-site evaluation of an urban land-surface model: Intra-urban heterogeneity, seasonality and parameter complexity requirements, Q. J. R. Meteorol. Soc., 138(665), 10941113.
  • Maidment, D. R. (1993), Handbook of Hydrology, McGraw-Hill, New York.
  • Manabe, S. (1969), Climate and the ocean circulation: 1. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Weather Rev., 97(11), 739774.
  • Masson, V. (2000), A physically-based scheme for the urban energy budget in atmospheric models, Boundary Layer Meteorol., 94(3), 357397.
  • Maxwell, E. (1998), METSTAT—The solar radiation model used in the production of the National Solar Radiation Data Base (NSRDB), Sol. Energy, 62(4), 263279.
  • McCarthy, M. P., M. J. Best, and R. A. Betts (2010), Climate change in cities due to global warming and urban effects, Geophys Res Lett, 37, L09705, doi:10.1029/2010GL042845.
  • Miguez-Macho, G., Y. Fan, C. P. Weaver, R. Walko, and A. Robock (2007), Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation, J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112.
  • Millward-Hopkins, J., A. Tomlin, L. Ma, D. Ingham, and M. Pourkashanian (2011), Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights, Boundary Layer Meteorol., 141(3), 443465.
  • Mizuno, M., Y. Nakamura, H. Murakami, and S. Yamamoto (1991), Effects of land use on urban horizontal atmospheric temperature distributions, Energy Build., 15(1–2), 165176.
  • Monteith, J. L. (1965), Evaporation and environment, Symp. Soc. Exp. Biol., 19, 245269.
  • Mortensen, L. H., M. Woloszyn, C. Rode, and R. Peuhkuri (2007), Investigation of microclimate by CFD modeling of moisture interactions between air and constructions, J. Build. Phys., 30(4), 279315.
  • Noilhan, J., and S. Planton (1989), A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536549.
  • Offerle, B., C. Grimmond, and T. R. Oke (2003), Parameterization of net all-wave radiation for urban areas, J. Appl. Meteorol., 42(8), 11571173.
  • Oke, T. R. (1973), City size and the urban heat island, Atmos. Environ., 7, 769779.
  • Pielke, R. A. (2001), Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, Rev. Geophys., 39(2), 151177.
  • Prihodko, L., and S. N. Goward (1997), Estimation of air temperature from remotely sensed surface observations, Remote Sens. Environ., 60(3), 335346.
  • Robitu, M., M. Musy, C. Inard, and D. Groleau (2006), Modeling the influence of vegetation and water pond on urban microclimate, Sol. Energy, 80(4), 435447.
  • Roth, M., T. Oke, and W. Emery (1989), Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology, Int. J. Remote Sens., 10(11), 16991720.
  • Sailor, D. J. (2011), A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment, Int. J. Climatol., 31(2), 189199.
  • Sailor, D. J., and L. Lu (2004), A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas, Atmos. Environ., 38(17), 27372748.
  • Sellers, P., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43(6), 505531.
  • Sellers, P., J. Berry, G. Collatz, C. Field, and F. Hall (1992), Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme, Remote Sens. Environ., 42(3), 187216.
  • Sellers, P., D. Randall, G. Collatz, J. Berry, C. Field, D. Dazlich, C. Zhang, G. Collelo, and L. Bounoua (1996), A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation, J. Clim., 9(4), 676705.
  • Shashua-Bar, L., and M. E. Hoffman (2000), Vegetation as a climatic component in the design of an urban street—An empirical model for predicting the cooling effect of urban green areas with trees, Energy Build., 31(3), 221235.
  • Shulman, M. D. (1984), Microclimate—The biological environment, Soil Sci., 138(3), 256.
  • Solecki, W. D., C. Rosenzweig, L. Parshall, G. Pope, M. Clark, J. Cox, and M. Wiencke (2005), Mitigation of the heat island effect in urban New Jersey, Global Environ. Change Part B: Environ. Hazards, 6(1), 3949.
  • Stahl, K., R. Moore, J. Floyer, M. Asplin, and I. McKendry (2006), Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density, Agric. For. Meteorol., 139(3), 224236.
  • Stoll, M., and A. Brazel (1992), Surface-air temperature relationships in the urban environment of Phoenix, Arizona, Phys. Geogr., 13(2), 160179.
  • Taha, H. (1997), Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat, Energy Build., 25(2), 99103.
  • Takahashi, K., H. Yoshida, Y. Tanaka, N. Aotake, and F. Wang (2004), Measurement of thermal environment in Kyoto city and its prediction by CFD simulation, Energy Build., 36(8), 771779.
  • Vercauteren, N., E. Bou-Zeid, H. Huwald, M. B. Parlange, and W. Brutsaert (2009), Estimation of wet surface evaporation from sensible heat flux measurements, Water Resour Res, 45, W06424, doi:10.1029/2008WR007544.
  • Voogt, J. A., and T. R. Oke (1997), Complete urban surface temperatures, J. Appl. Meteorol., 36(9), 11171132.
  • Walko, R. L., L. E. Band, J. Baron, T. G. Kittel, R. Lammers, T. J. Lee, D. Ojima, R. A. Pielke Sr., C. Taylor, and C. Tague (2000), Coupled atmosphere-biophysics-hydrology models for environmental modeling, J. Appl. Meteorol., 39(6), 931944.
  • Wang, J., T. A. Endreny, and J. M. Hassett (2005), Flexible modeling package for topographically based watershed hydrology, J. Hydrol., 314(1–4), 7891.
  • Wang, J., T. A. Endreny, and D. J. Nowak (2008), Mechanistic simulation of tree effects in an urban water balance model, J. Am. Water Resour. Assoc., 44(1), 7585.
  • Weaver, C. P., and R. Avissar (2001), Atmospheric disturbances caused by human modification of the landscape, Bull. Am. Meteorol. Soc., 82(2), 269281.
  • Wiernga, J. (1993), Representative roughness parameters for homogeneous terrain, Boundary Layer Meteorol., 63(4), 323363.
  • Wilson, T., J. Norman, W. Bland, and C. Kucharik (2003), Evaluation of the importance of Lagrangian canopy turbulence formulations in a soil–plant–atmosphere model, Agric. For. Meteorol., 115(1), 5169.
  • Yang, Y., T. A. Endreny, and D. J. Nowak (2011), iTree-Hydro: Snow hydrology update for the urban forest hydrology model, J. Am. Water Resour. Assoc., 47(6), 1,2111,218.
  • Yao, R., and K. Steemers (2013), Urban microclimates and simulation, in Design and Management of Sustainable Built Environments, edited by R. Yao, pp. 7797, Springer, London.
  • Yao, R., Q. Luo, and B. Li (2011), A simplified mathematical model for urban microclimate simulation, Build. Environ., 46(1), 253265.