Get access
Journal of Geophysical Research: Atmospheres

Space-time interpolation of satellite winds in the tropics



[1] A space-time interpolator for creating average geophysical fields from satellite measurements is presented and tested. It is designed for optimal spatiotemporal averaging of heterogeneous data. While it is illustrated with satellite surface wind measurements in the tropics, the methodology can be useful for interpolating, analyzing, and merging a wide variety of heterogeneous and satellite data in the atmosphere and ocean over the entire globe. The spatial and temporal ranges of the interpolator are determined by averaging satellite and in situ measurements over increasingly larger space and time windows and matching the corresponding variability at each scale. This matching provides a relationship between temporal and spatial ranges, but does not provide a unique pair of ranges as a solution to all averaging problems. The pair of ranges most appropriate for a given application can be determined by performing a spectral analysis of the interpolated fields and choosing the smallest values that remove any or most of the aliasing due to the uneven sampling by the satellite. The methodology is illustrated with the computation of average divergence fields over the equatorial Pacific Ocean from SeaWinds-on-QuikSCAT surface wind measurements, for which 72 h and 510 km are suggested as optimal interpolation windows. It is found that the wind variability is reduced over the cold tongue and enhanced over the Pacific warm pool, consistent with the notion that the unstably stratified boundary layer has generally more variable winds and more gustiness than the stably stratified boundary layer. It is suggested that the spectral analysis optimization can be used for any process where time-space correspondence can be assumed.

Get access to the full text of this article