• Open Access

Association between trends in daily rainfall percentiles and the global mean temperature



[1] Attributing changes in extreme daily precipitation to global warming is difficult, even when based on global climate model simulations or statistical trend analyses. The question about trends in extreme precipitation and their causes has been elusive because of climate models' limited precision and the fact that extremes are both rare and occur at irregular intervals. Here a newly discovered empirical relationship between the wet-day mean and percentiles in 24 h precipitation amounts was used to show that trends in the wet-day 95th percentiles worldwide have been influenced by the global mean temperature, consistent with an accelerated hydrological cycle caused by a global warming. A multiple regression analysis was used as a basis for an attribution analysis by matching temporal variability in precipitation statistics with the global mean temperature.