Journal of Geophysical Research: Atmospheres

Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder

Authors


Abstract

[1] The Suomi National Polar-Orbiting Partnership (NPP) satellite was launched on 28 October 2011 and carries the Advanced Technology Microwave Sounder (ATMS) on board. ATMS is a cross-track scanning instrument observing in 22 channels at frequencies ranging from 23 to 183 GHz, permitting the measurements of the atmospheric temperature and moisture under most weather conditions. In this study, the ATMS radiometric calibration algorithm used in the operational system is first evaluated through independent analyses of prelaunch thermal vacuum data. It is found that the ATMS peak nonlinearity for all the channels is less than 0.5 K, which is well within the specification. For the characterization of the ATMS instrument sensitivity or noise equivalent differential temperatures (NEDT), both standard deviation and Allan variance of warm counts are computed and compared. It is shown that NEDT derived from the standard deviation is about three to five times larger than that from the Allan variance. The difference results from a nonstationary component in the standard deviation of warm counts. The Allan variance is better suited than the standard deviation for describing NEDT. In the ATMS sensor brightness temperature data record (SDR) processing algorithm, the antenna gain efficiencies of main beam, cross-polarization beam, and side lobes must be derived accurately from the antenna gain distribution function. However, uncertainties remain in computing the efficiencies at ATMS high frequencies. Thus, ATMS antenna brightness temperature data records (TDR) at channels 1 to 15 are converted to SDR with the actual beam efficiencies whereas those for channels 16 to 22 are only corrected for the near-field sidelobe contributions. The biases of ATMS SDR measurements to the simulations are consistent between GPS RO and NWP data and are generally less than 0.5 K for those temperature-sounding channels where both the forward model and input atmospheric profiles are reliable.

Ancillary